(TP - PROJET AVL - 2025)

January 19, 2026

Environnement de travail

Le projet se fera sur la méme VM que les TPs.

Connectez-vous a la VM en utilisant un client SSH: $> ssh ...

Lancez la commande $> seclab tutxx afin de mettre en place I’environnement approprié pour chaque
question

Un serveur SAMBA est fonctionnel sur la VM locale pour le partage de fichiers avec I’0OS hote.
Activez la création de crash dump $> ulimit -c unlimited. Les crash dumps seront créés dans le
répertoire courant.

Fuzzing

L’objectif de cette partie est de comprendre 1'utilité du Fuzzing dans la détection de vulnérabilités dans le
code source ou binaire. Nous nous focaliserons ici sur l'outil AFL (American Fuzzy Lop). Pour ce faire,
répondez a ces questions :

1. Expliquez le fonctionnement du Fuzzing a I'aide de 1'outil AFL.
2. Expliquez de maniere précise I’étape d’instrumentation de I'outil ainsi que son intérét.

3. Trouvez les vulnérabilités dans ce binaireen utilisant AFL.

indication: En posant les bonnes questions a ChatGPT ou a un outil équivalent suffit pour répondre aux

questions 1 et 2.

Exécution symbolique

Le but de cette partie est de se familiariser avec le concept de d’analyse symbolique.
1. Etudier, puis présenter avec des exemples le concept de ’analyse symbolique

e LIEN 1
o LIEN 2

2. Ecrivez un programme utilisant Angr afin de trouver automatiquement ’entrée donnant lieu a ’affichage
par $> ~/tuts/lab01/tutOl-crackme du message "Password, 0K, :)".

3. Comment pourrait-on utiliser cette méthode pour exploiter la vulnérabilité de type buffer overflow du
fichier $> ~/tuts/1ab03/tut03-stackovfl par exemple.

https://github.com/securitylab-repository/scripts/raw/refs/heads/main/download/fuzzing_projet.zip
https://efrei365net-my.sharepoint.com/:p:/g/personal/boussad_ait_salem_efrei_fr/IQCA1fKHB1vtQoKOmE_46NqWAXqbDcKhyiIyWCArvJbA6SI?e=Utev4b
https://docs.angr.io/examples

AVL PROJET AVL - 2025 2025-01-08

Erreur Logique et Race condition

Soit le code vulnérable projetpart3.c| et sa version compilée projetpart3) qui est liée a un jeu vidéo snake
basique.
La fonction snake_main est le point d’entrée du jeu.

1. Affichez le flag (/proc/flag) en passant toutes les étapes du programme projetpart3

indication:

1. Analyser le code assembleur de la fonction absolute(). La succes est dans les limites de la représentation
des nombres négatifs en complément a deux.

2. La deuxieme étape peut étre réussie en étant plus rapide que le programme pour lire le fichier de mot
de passe créé et qui est supprimé juste apres (Race condition vulnerability).

3. La derniere étape, qui est d’afficher le flag, est liée a une vulnérabilité dans le code de snake_main.
4. Vous pouvez utiliser le code |1| pour intéragir avec le programme.

Listing 1: template.py

#!/usr/bin/env python2
import time
import os

import pty

(pid,fd) = pty.fork()

if pid == : # le fils
os.execle("./target","./projetpartl",os.environ)
exit (0)

else : # le pere
lock = "/tmp/.lock-%d" % pid

print ("pid=_%s,ulock = %s" %(pid,lock))
os.write(fd,"83648\n")

while True:
os.write(1l,o0s.read(fd,1))

os.wait ()

Attaques liées au Tas (Heap)

1. En étudiant entre autres cette documentation :

e Lienl
e [Lien2

e [Lien3
expliquez en détail deux attaques liées au tas de votre choix.

2. soit le code vulnérable suite : heap_vul.c. En vous basant sur votre compréhension de la gestion du tas,
tentez de forcer 'appel de la fonction winner().

B. AIT SALEM Page 2 of 3

https://efrei365net-my.sharepoint.com/:u:/g/personal/boussad_ait_salem_efrei_fr/IQDbwZDHIg4NS7K-gCxrPqxAAdu5OKpCqUBwgjzEE8Nnqts?e=yl2fp2
https://efrei365net-my.sharepoint.com/:u:/g/personal/boussad_ait_salem_efrei_fr/IQCUiZ4HuZniRKkDDmOEfr7OAU_iy3zUIpRs8OEMkC_G_48?e=TjP8bP
https://efrei365net-my.sharepoint.com/:u:/g/personal/boussad_ait_salem_efrei_fr/IQD4TNcHsSYHQ5DqhYUSI1CIAb38w49LJaxmWc7qX0UbCUs?e=LZ3bqO
https://github.com/securitylab-repository/scripts/blob/main/download/HeapLab%20-%20GLIBC%20Heap%20Exploitation.pdf
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://azeria-labs.com/heap-exploitation-part-2-glibc-heap-free-bins/
https://raw.githubusercontent.com/securitylab-repository/scripts/refs/heads/main/download/heap_vul.c

AVL PROJET AVL - 2025 2025-01-08

indication:

- Pour COI’IlpﬂeI‘ le programme : gcc -m32 -no-pie simple.c -o simple
- Vous pouvez utiliser la commande gdb info proc map ou vmmap de pwndbg.
- Vous pouvez utiliser la commande pwndbg heap pour connaitre la structure courante du tas (heap)

B. AIT SALEM Page 3 of 3

