
�
�

�
�TP - PROJET AVL - 2025

January 19, 2026

Environnement de travail

Le projet se fera sur la même VM que les TPs.
Connectez-vous à la VM en utilisant un client SSH: $> ssh ...

Lancez la commande $> seclab tutxx afin de mettre en place l’environnement approprié pour chaque
question
Un serveur SAMBA est fonctionnel sur la VM locale pour le partage de fichiers avec l’OS hôte.
Activez la création de crash dump $> ulimit -c unlimited. Les crash dumps seront créés dans le
répertoire courant.

Fuzzing

L’objectif de cette partie est de comprendre l’utilité du Fuzzing dans la détection de vulnérabilités dans le
code source ou binaire. Nous nous focaliserons ici sur l’outil AFL (American Fuzzy Lop). Pour ce faire,
répondez à ces questions :

1. Expliquez le fonctionnement du Fuzzing à l’aide de l’outil AFL.

2. Expliquez de manière précise l’étape d’instrumentation de l’outil ainsi que son intérêt.

3. Trouvez les vulnérabilités dans ce binaireen utilisant AFL.

indication: En posant les bonnes questions à ChatGPT ou à un outil équivalent suffit pour répondre aux

questions 1 et 2.

Exécution symbolique

Le but de cette partie est de se familiariser avec le concept de d’analyse symbolique.

1. Étudier, puis présenter avec des exemples le concept de l’analyse symbolique

• LIEN 1

• LIEN 2

2. Écrivez un programme utilisant Angr afin de trouver automatiquement l’entrée donnant lieu à l’affichage
par $> ~/tuts/lab01/tut01-crackme du message "Password␣OK␣:)".

3. Comment pourrait-on utiliser cette méthode pour exploiter la vulnérabilité de type buffer overflow du
fichier $> ~/tuts/lab03/tut03-stackovfl par exemple.

https://github.com/securitylab-repository/scripts/raw/refs/heads/main/download/fuzzing_projet.zip
https://efrei365net-my.sharepoint.com/:p:/g/personal/boussad_ait_salem_efrei_fr/IQCA1fKHB1vtQoKOmE_46NqWAXqbDcKhyiIyWCArvJbA6SI?e=Utev4b
https://docs.angr.io/examples


AVL PROJET AVL - 2025 2025-01-08

Erreur Logique et Race condition

Soit le code vulnérable projetpart3.c et sa version compilée projetpart3 qui est liée à un jeu vidéo snake

basique.
La fonction snake main est le point d’entrée du jeu.

1. Affichez le flag (/proc/flag) en passant toutes les étapes du programme projetpart3

indication:

1. Analyser le code assembleur de la fonction absolute(). La succès est dans les limites de la représentation
des nombres négatifs en complément à deux.

2. La deuxième étape peut être réussie en étant plus rapide que le programme pour lire le fichier de mot
de passe créé et qui est supprimé juste après (Race condition vulnerability).

3. La dernière étape, qui est d’afficher le flag, est liée à une vulnérabilité dans le code de snake_main.
4. Vous pouvez utiliser le code 1 pour intéragir avec le programme.

Listing 1: template.py

#!/ usr/bin/env python2

import time

import os

import pty

(pid ,fd) = pty.fork()

if pid == 0 : # le fils

os.execle("./ target","./ projetpart1",os.environ)

exit (0)

else : # le pere

lock = "/tmp/.lock -%d" % pid

print("pid=␣%s,␣lock␣=␣%s" %(pid ,lock))

os.write(fd ,"83648\n")

while True:

os.write(1,os.read(fd ,1))

os.wait()

Attaques liées au Tas (Heap)

1. En étudiant entre autres cette documentation :

• Lien1

• Lien2

• Lien3

expliquez en détail deux attaques liées au tas de votre choix.

2. soit le code vulnérable suite : heap vul.c. En vous basant sur votre compréhension de la gestion du tas,
tentez de forcer l’appel de la fonction winner().

B. AIT SALEM Page 2 of 3

https://efrei365net-my.sharepoint.com/:u:/g/personal/boussad_ait_salem_efrei_fr/IQDbwZDHIg4NS7K-gCxrPqxAAdu5OKpCqUBwgjzEE8Nnqts?e=yl2fp2
https://efrei365net-my.sharepoint.com/:u:/g/personal/boussad_ait_salem_efrei_fr/IQCUiZ4HuZniRKkDDmOEfr7OAU_iy3zUIpRs8OEMkC_G_48?e=TjP8bP
https://efrei365net-my.sharepoint.com/:u:/g/personal/boussad_ait_salem_efrei_fr/IQD4TNcHsSYHQ5DqhYUSI1CIAb38w49LJaxmWc7qX0UbCUs?e=LZ3bqO
https://github.com/securitylab-repository/scripts/blob/main/download/HeapLab%20-%20GLIBC%20Heap%20Exploitation.pdf
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://azeria-labs.com/heap-exploitation-part-2-glibc-heap-free-bins/
https://raw.githubusercontent.com/securitylab-repository/scripts/refs/heads/main/download/heap_vul.c


AVL PROJET AVL - 2025 2025-01-08

indication:

- Pour compiler le programme : gcc -m32 -no-pie simple.c -o simple

- Vous pouvez utiliser la commande gdb info proc map ou vmmap de pwndbg.
- Vous pouvez utiliser la commande pwndbg heap pour connâıtre la structure courante du tas (heap)

B. AIT SALEM Page 3 of 3


