CCNA SWITCHING & ROUTING

Déroulé de la formation

Première semaine	 Introduction aux réseaux : Couches OSI, ARP, IOS, CDP, LLDP, DHCP, Architecture
	 LAN & commutation : Trame Ethernet, collision, CSMA/CD, table d'@ Mac, Port Security, VLAN, VTP, Routage inter VLAN, Management, STP, Etherchannel, HSRP
	 3. <u>IPv6 :</u> Adressage, routage, techniques de transition
Seconde semaine	 4. <u>Routage :</u> Subnetting, statique, dynamique, DV, LS RIP, OSPF, EIGRP, BGP
	 5. <u>WAN :</u> Technologies, topologies, équipements Protocoles HDLC, PPP PAP CHAP, VPN
	 <u>Sécurité & administration :</u> ACL, NAT, SNMP, Logging, NetFlow, QoS, IP SLA

FORMATION CCNA 2018

Introduction aux réseaux

Présentation générale

4

LAN : Partage des ressources locales

- Réseaux Locaux (LAN)
 - Partage d'applications et de données
 - Stockage
 - Accès à l'Internet

WAN : Accès aux réseaux étendus

- Les réseaux étendus (WAN) connectent à l'Internet
- Ils peuvent aussi interconnecter des sites
- Il existe de nombreuses technologies d'accès : DSL, Cable...

Les topologies d'accès

Les modèles OSI et TCP/IP

Le modèle OSI

- OSI (Open Systems Interface) est une suite de protocoles standards. Cependant, TCP/IP est devenu, de fait, le standard.Toutefois, l'invocation du modèle OSI subiste et facilite la compréhension.
- Il permet de spéficier séparément chaque couche et de définir les messages échangés à chaque niveau
- Il permet aussi d'associer un dispositif à une couche du modèle OSI qu'il utilise

Comparaison de OSI et TCP/IP dans le LAN

TCP/IP sur Ethernet est le modèle qui s'est imposé dans les réseaux locaux

Comparaison de OSI et TCP/IP dans le WAN

Le réseau étendu est caractérisé par les deux premières couches

Application			
Présentation	Application		
Session			
Transport	TCP ou UDP		
Réseaux	Internet Protocol		
Liaison de données	Dial/DSL/FR/HDLC/PPP		
Physique			

Encapsulation et dé-encapsulation

L'encapsulation des données

FORMATION CCNA 2018

Dé-encapsulation des données

Data encapsulation avec TCP/IP

Les données de l'usager sont encapsulées dans un segment TCP qui lui-même est encapsulé dans un paquet IP. Ce paquet est encapsulé dans une trame Ethernet qui est découpée en bits et envoyée sur le réseau

Communication pair à pair

OSI couche 1 : la couche physique

OSI couche 1 - Couche physique

- Définit les spécifications techniques et fonctionnelles des jonctions entre dispositifs
- Le Protocol Data Unit est le Bit
- Les dispositifs sont :
 - Repeteurs (LAN)
 - Concentrateurs (LAN)
 - Modems (WAN)
 - DSU/CSU (WAN)

101100111100001011001

FORMATION CCNA 2018

Le répéteur

- Equipement de couche 1 qui combat l'atténuation.
- Le répéteur:
 - Récupére le signal atténué
 - Le régénére (détection d'erreurs)
 - Le retransmet sur le réseau

Le concentrateur

- Permet d'interconnecter plusieurs équipements
- Régénère le signal, comme le répeteur
- C'est un répeteur multiport

Le Modem

Un modem convertit le signal analogique du RTC en signal numérique pour le PC

CSU/DSU ou ETTD/ETCD

C'est un modem utilisé par les liaisons spécialisées et Frame-Relay

OSI couche 2 : Liaison de données

OSI couche 2 - Liaison des données

- La couche liaison de données fournit un conteneur de bits appelés Trames.
- Cette couche définit la méthode d'accès au média (Ethernet, Token Ring)
- Chaque équipement de couche 2 possède une adresse physique appelée aussi MAC

Equipements de couche 2 : le commutateur

- Le commutateur apprend les adresses MAC en silence
- Cet apprentissage permet, par la suite, de copier les trames uniquement sur le port concerné

Exemple de protocole couche 2 : Ethernet

DIX

Preambule	Destination	Source	Туре	Data Upper Layers	FCS
8	6	6	2	46 - 1500	4

IEEE 802.3 original

Preambule	SFD Destination	Source Len.	Data Upper Layers	FCS
7	1 6	6 2	46 - 1500	4

IEEE 802.3 révisé

Preambule	SFD	Destination	Source	L/T	Data Upper Layers	FCS
7	1	6	6	2	46 - 1500	4

L'adresse MAC

L'adresse MAC

MAC address format

FORMATION CCNA 2018

Ethertype

Valeur	Signification
0x0800	IP
0x0806	ARP Address Resolution Protocol
0x8100	802.1Q pour interfaces trunk
0x86DD	IPv6

OSI couche 3 : la couche réseaux

OSI couche 3 - La couche réseaux

- La couche réseau introduit un nommage logique : l'adresse IP
- Des adresses IP sont regroupées en entités appelés réseaux et sous réseaux.
- Les réseaux sont annoncés par des protocoles de routage afin de déterminer le plus court chemin.
- La couche réseaux n'est pas fiable

Dispositif de la couche 3 : le Router

• Les équipements de la couche 3 sont des routeurs

Caractéristiques du Protocole IP

- Couche 3 du modèle OSI
- Non fiable (best effort) : pas de garantie que les paquets soient bien arrivés, ni qu'ils arrivent dans l'ordre dans lequel ils ont été envoyés
- Chaque paquet est traité indépendament : 2 paquets dont les adresses source et destination sont identiques peuvent emprunter des chemins différents

Adressage IP

- Chaque hôte (PC, imprimante, périphérique...) doit posséder son adresse IP
- Une adresse IP est la combinaison d'une adresse de réseau et d'un complément de hôte
- L'adresse est représentés sur 4 octets en décimal

Le rôle du routeur

• Si deux PC ne sont pas sur le même réseau, ils sont séparés par un routeur.

•Ce routeur est la passerelle de chaque PC

- Les entêtes <u>IP</u> ne sont **pas modifiées** par le routeur
- Les entêtes <u>Ethernet</u> sont **reconstruites** par le routeur

Un réseau local est associé à un réseau IP

- Chaque host a une adresse IP
- Toutes les adresses IP d'un même site appartiennent au même réseau

FORMATION CCNA 2018
Le routeur est la passerelle par défaut

•Internet Protocol (IP) interconnect les LAN (Ethernet)

Le routeur est la passerelle par défaut du LAN

FORMATION CCNA 2018

L'entête IP

0 1 2 3	4 5 6 7	8 9 10 11 12 13 14 15	5 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3						
Version	Long. En-tête	Type de service	Lo	ngueur totale du datagramme					
	Identif	ication	Drapeau	Place du fragment					
Durée	de vie	Protocole		CheckSum					
		Adresse I	P Sourc	e					
		Adresse IP	Destinat	tion					
	Options								
	Bourrage								
Données									

Les protocoles de routage

• Les protocoles de routage annoncent les routes de chaque site

• Chaque routeur tient compte de ces annonces pour déterminer le "Next hop" dans la perspective du meilleur chemin vers la destination

OSI couche 4 : la couche transport

La couche transport

- Multiplexage de session (UDP et TCP)
- Segmentation (TCP)
- Controle de flux (TCP)
- Orienté connexion (TCP)
- Fiabilité (TCP)

Caractéristiques de UDP

- Sans connexion
- Simplex
- Détection d'erreur
- Fait de son mieux (Best effort)
- Pas de correction d'erreur

Caractéristiques de TCP

- Protocol orienté connexion
- Fonctionne en mode Full-duplex
- Détection d'erreur
- Sequencement et ordonnancement des paquets
- Acquittement des paquets reçus
- Retransmission des paquets perdus

Protocol à trois poignées de main

Acquittement TCP

La fenêtre glissante

Numéros de séquence

OSI couche 7 : Application

Les applications TCP/IP

- Transferts de fichiers
 - FTP
 - TFTP
 - Network File System
- E-mail
 - Simple Mail Transfer Protocol
- Accès distant
 - Telnet
 - rlogin
- Gestion des réseaux
 - Simple Network Management Protocol
- Gestion des noms
 - Domain Name System

FORMATION CCNA 2018

Les numéros de port des applications

Bilan des couches

FORMATION CCNA 2018

Subnetting Première partie

Subnetting sur octet entier

L'adresse de couche 3:

- 1. L'adresse IP et son masque
 - 2. Les adresses réservées
 - 3. Les classes
 - 4. Le nombre d'adresses par réseau
 - 5. Le subnetting sur un octet entier
 - 6. Le subnetting sur un octet partiel

L'adresse IP

- Une adresse IP, c'est 4 octets : 192.168.4.6
 - •**192** = 1^{er} octet
 - •168 = 2^{ème} octet
 - •4 = 3^{ème} octet
 - •6 = 4^{ème} octet
- Un octet = 8 bits
 - donc une adresse $IP = 8 \times 4 = 32$ bits

FORMATION CCNA 2018

L'adresse IP seule ne suffit pas !

- Comment distinguer la partie 'réseau' de la partie 'hôte' ?
- → à l'aide du masque

Exemples de masques :
255.0.0.0
255.255.0.0
255.255.255.0

Application du masque décimal

• On va superposer le masque et l'adresse IP.

FORMATION CCNA 2018

Exercice : identifiez la partie réseau

	Adres	sse IP		Masque			
10	1	1	2	255	0	0	0
14	14	14	14	255	0	0	0
142	142	142	142	255	255	0	0
172	16	0	255	255	255	0	0
192	168	168	168	255	255	255	0
199	199	199	199	255	255	255	0

Solution

	Adres	sse IP		Masque			
10	1	1	2	255	0	0	0
14	14	14	14	255	0	0	0
142	142	142	142	255	255	0	0
172	16	0	255	255	255	0	0
192	168	168	168	255	255	255	0
199	199	199	199	255	255	255	0

Les puissances de 2

27	26	2 ⁵	24	2 ³	2 ²	2 ¹	20
128	64	32	16	8	4	2	1

Ce tableau facilite les conversions

Binaire ⇔ Décimal

Exemples de conversion

128	64	32	16	8	4	2	1		en décimal
1	0	0	0	0	0	0	0	=	128
1	1	0	0	0	0	0	0	=	192
0	0	1	1	0	0	0	0	=	?
0	0	0	0	1	0	1	0	=	?
?	?	?	?	?	?	?	?	=	40

Exemples de conversion

128	64	32	16	8	4	2	1		en décimal
1	0	0	0	0	0	0	0		128
1	1	0	0	0	0	0	0		192
0	0	1	1	0	0	0	0	=	48
0	0	0	0	1	0	1	0	=	10
0	0	1	0	1	0	0	0	=	40

Comment écrire le masque en binaire ?

128	64	32	16	8	4	2	1		en décimal
?	?	?	?	?	?	?	?	=	255

Exemple :

- 11111111.0000000.000000.00000000
- 255 . 0 . 0 . 0

Le masque en binaire

- Le masque est une suite de 32 bits.
 - Dès qu'un bit est à 0, tous les bits suivants sont à 0.
- Exemples :

 - 111111111111110000000000000000000
 - 111111111111111111111100000000

Application du masque binaire

• Le masque est superposé à l'adresse IP.

Ecriture simplifiée du masque

- Le masque est une suite de '1' suivie par une suite de '0':
 il suffit d'indiquer le nombre de 1.
- Exemples :

 - 11111111111111110000000.0000000 s' écrira /16
 - 111111111111111111111111100000000 s' écrira /24

Exercice : identifiez la partie réseau

	Masque			
10	1	2	3	/8
19	19	19	19	/8
150	150	150	150	/16
200	201	202	203	/24

Solution

	Masque			
10	1	2	3	/8
19	19	19	19	/8
150	150	150	150	/16
200	201	202	203	/24
L'adresse de couche 3:

- 1. L'adresse IP et son masque
- 2. Les adresses réservées
 - 3. Les classes
- 4. Le nombre d'adresses par réseau
- 5. Le subnetting sur un octet entier
- 6. Le subnetting sur un octet partiel

FORMATION CCNA 2018

Exemples d'adresses réseau

	Masque			
10	0	0	0	/8
19	0	0	0	/8
150	150	0	0	/16
200	201	202	0	/24

Exemples d'adresses broadcast

	Masque			
10	255	255	255	/8
19	255	255	255	/8
150	150	255	255	/16
200	201	202	255	/24

Adresses réservées

• Si la partie hôte **ne contient que des 0** :

• C' est l'adresse 'réseau'.

• Elle ne peut pas être attribuée à un équipement.

• Si la partie hôte ne contient que des 1 :

• C'est l'adresse 'broadcast'.

• Elle ne peut pas être attribuée à un équipement.

Adresse réseau de A et B

Adresse broadcast de A et B

FORMATION CCNA 2018

Exercice : déterminez les adresses interdites

Adresse IP				Masque	Adresse réseau	Adresse broadcast
10	5	8	3	/8		
50	50	50	50	/8		
111	111	111	111	/16		
172	16	0	3	/16		
192	168	168	8	/24		
200	200	200	200	/24		

Solutions

Adresse IP				Masque	Adresse réseau	Adresse broadcast
10	5	8	3	/8	10.0.0.0	10.255.255.255
50	50	50	50	/8	50 .0.0.0	50.255.255.255
111	111	111	111	/16	111.111.0.0	111.111.255.255
172	16	0	3	/16	172.16 .0.0	172.16.255.255
192	168	168	8	/24	192.168.168.0	192.168.168.255
200	200	200	200	/24	200.200.200.0	200.200.200.255

Address Resolution Protocol

Adresse physique et adresse logique

- Chaque noeud du réseau a deux adresses :
 - Une adresse physique appelée adresse MAC
 - Une adresse logique appelée adresse IP
- L'adresse MAC est gravée dans la carte réseau. Si l'on change cette carte, l'adresse MAC change
- L'adresse IP est configurée par l'administrateur et ne dépends pas du matériel, c'est une adresse logique
- ARP permet de trouver l'adresse MAC d'un équipement dont on connaît déjà l'adresse IP

Requête ARP

 Une requête ARP est un broadcast et tous les PCs du LAN le reçoivent

Réponse ARP

 Mais seul le PC B qui se reconnaît répond en unicast en envoyant son adresse MAC

La requête ARP ne sort pas du LAN

- Par défaut, les routeurs filtrent les broadcasts
- Si la destination nécessite de traverser des routeurs, ARP est inopérant

Rappel !

• Si deux PC ne sont pas sur le même réseau, ils sont séparés par un routeur.

•Ce routeur est la passerelle de chaque PC

- Les entêtes <u>IP</u> ne sont pas modifiées par le routeur
- Les entêtes <u>Ethernet</u> sont **reconstruites** par le routeur

Rappel !

FORMATION CCNA 2018

Deux requêtes ARP sont nécessaires

- La première requête ARP obtient l'adresse MAC de la passerelle
- La seconde requête ARP obtient l'adresse MAC du destinataire final.

Cache ARP sur un PC

 Un cache ARP permet de se souvenir des correspondances entre IP et MAC

Cache ARP sur un routeur

Test

- Quelle est l'

 MAC SOURCE des paquets envoyés par le serveur au hôte A lorsqu' il arrive à l' hôte A ?
 - A. the MAC address of the server network interface
 - B. the MAC address of host A
 - C. the MAC address of router interface e1
 - D. the MAC address of router interface e0

FORMATION CCNA 2018

• Que fait le routeur lorsqu'il reçoit cette trame ?

Source	MAC 07.f892	So 192	urce IP 2.168.20.5	Destination M 0000.0c63.ae	4 5	Destination IP 192.138.40.5
Data Fra	ame:	i.				
Internet	192.168.40	0.1	2.13	0000.0c36.6965	ARPA	FastEthernet0/2
Internet	192.168.60	0.1		0000.0c63.1300	ARPA	FastEthernet0/1
Internet	192.168.40	1.5	9	0000.0c07.4320	ARPA	FastEthernet0/2
Internet	192.168.20	0.1	100	0000.0c63.ae45	ARPA	FastEthernet0/0
Internet	192.168.60	0.5	8	0000.0c07.ac00	ARPA	FastEthernet0/1
Internet	192.168.20	J.5	У	UUUU.UcU7.f892	ARPA	FastEthernetU/L
Protocol	Address		Age(min)	Hardware Adddr	Туре	Interface

- Remplace l' @ MAC source par 0000.0C36.6965
- Remplace l' @ MAC dest par 0000.0c07.4320
- Envoie la trame sur son interface fa0/2

Test

Après que A ait pingé B, quelle entrée est présente dans le cache ARP du host A ?

Interface Address	Physical Address	Туре	
192.168.6.1	000f.2480.8916	dynamic	

FORMATION CCNA 2018

Test

• Quelles @ destination (IP et MAC) utilisera A pour pinger B ?

Cisco IOS

Se connecter à l'équipement

Connexion physique du port CONSOLE

Le port CONSOLE

- C' est un port RJ45.
- Tous les équipements CISCO ont un port CONSOLE... et toujours un seul port console.

FORMATION CCNA 2018

Connexion par port COM ou port USB

• Certains PC n' ont pas de port COM.

• Utiliser une adaptateur USB :

Se connecter à l'équipement

Connexion logicielle

Le Logiciel

- On peut utiliser HyperTerminal
 - à activer sur les OS Windows
- On peut aussi prendre :
 - Putty
 - TeratermPro
 - CRT
 - • • •

Interface de connexion

🍓 Console - HyperTer	ninal							
<u>File Edit View Call 1</u>	ransfer <u>H</u> elp							
Router> Router>en Router# Router# Router# Router#_	I							
Connected 0:04:49	Auto detect	9600 8-N-1	SCROLL	CAPS	NUM	Capture	Print echo	

FORMATION CCNA 2018

DEUX modes

- Le mode USER :
 - Le 'prompt' est « > »
 - Seulement certaines commandes sont disponibles
- Le mode **PRIVILEGIE** :
 - Le 'prompt' est « # »
 - Toutes les commandes sont disponibles
Basculer entre les 2 modes

- Utiliser les commandes enable et disable :
 - •Router>enable
 - •Router#
 - •Router#
 - •Router#disable
 - •Router>
- Par défaut, il n'y a pas de mot de passe pour basculer en mode privilégié.

Passage reservé

- Par défaut en mode console, pas de mot de passe pour passer en mode privilégié :
 - tout individu qui a accès à l'équipement peut modifier sa configuration
- Avec un mot de passe :
 - seuls les personnes ayant ce mot de passe peuvent passer en mode privilégié
 - trois tentatives, proposées en boucle :
 - TATA>enable
 - Password:
 - Password:
 - Password:
 - % Bad secrets

Le mot de passe PRIVILEGIE

- Deux manières de le configurer :
 - ancienne commande :
 - TATA#conf t
 - TATA(config) #enable password Z3R4
 - nouvelle commande :
 - TATA#conf t
 - TATA (config) #enable secret R4Z3
 - est systématiquement crypté
 - cryptage plus robuste
- Si les 2 commandes sont saisies, seule le mot de passe de la nouvelle commande sera demandé.

Activer le cryptage

• Un service permet d'activer le cryptage des mots de passe :

TATA#conf t

TATA(config) #service password-encryption

- Ce service est rétro actif :
 - les mots de passe déjà configurés seront cryptés, ainsi que tout nouveau mot de passe

Contextes du mode privilégié

- Le mode privilégié contient plusieurs contextes :
 - le contexte de gestion
 - le contexte de configuration globale
 - les contextes de configuration spécifique
 - spécifique à une interface
 - spécifique à une ligne
 - spécifique à un protocole de routage
 - etc..

FORMATION CCNA 2018

Contextes

- Le mode privilégié contient plusieurs contextes :
 - le contexte de gestion
 - •Router#
 - le contexte de configuration globale
 - •Router(config)#
 - les contextes de configuration spécifique
 - •Router(config-if)#
 - •Router(config-router)#

Le contexte de gestion

- Il permet d'interroger le routeur ou le switch pour lui demander d'afficher les paramètres configurés :
 - quelle adresse IP as-tu sur telle interface ?
 - quels sont les équipements voisins que tu as détectés ?

• etc...

- Il permet d'effectuer les commandes de sauvegarde de la configuration :
 - copier la configuration dans la mémoire
- Il permet de lancer des commandes ICMP, Telnet, Traceroute :
 - pinger un autre équipement du réseau
 - découvrir le chemin emprunté par le traffic entre 2 points

Le contexte de gestion

• Il est identifiable par :

•Hostname#

- Les commandes de consultation par 'show' :
 - show ip interface brief (routeur)
 - show interface status (switch)
 - show running-configuration
- Les commandes d'administration de l'équipement et du réseau :
 - •copy running-config startup-config
 - ping
 - traceroute

Improve User Experience in CLI (Cont.)

Step 13: Use begin and include options with show running-config command.

R1# show running-config | begin interface

R1# show running-config | include interface

Step 14: Use section option with show running-config command.

R1# show running-config | section interface

Step 15: Use exclude option with show running-config command.

R1# show running-config | exclude !

Contexte de configuration globale

- Il permet de configurer un paramètre global du routeur ou du switch :
 - son hostname
 - le mot de passe du mode privilégié
 - etc..
- Il permet aussi de basculer dans un mode de configuration spécifique

Contexte de configuration globale

- Il est identifié par :
 - Hostname (config) #
- Pour rentrer dans le contexte de configuration globale :
 - taper la commande 'configure terminal'
- Pour quitter le contexte de configuration globale :
 - taper la commande 'exit'
 - ou la combinaison de touches [Ctrl] + 'Z' (équivalent de la commande end)

Nécessité des contextes

- Chaque commande ne fonctionne que dans son contexte :
 - Une commande de configuration ne fonctionne pas dans le contexte de gestion.
- Et inversement :
 - Une commande de gestion ne fonctionne pas dans le contexte de configuration.
 - On peut toutefois forcer la commande de consultation avec le prefix 'do'.

Refus d'une commande de configuration

Router>hostname TOTO

^

% Invalid input detected at '^' marker.

Router>enable

Router#

Router#hostname TOTO

^

% Invalid input detected at '^' marker.

Router#configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

Router(config) #hostname TOTO

TOTO (config) #

Refus d'une commande 'show'

TOTO#show ip interface brief Interface IP-Address OK? Method Status Protocol FastEthernet0/0 unassigned YES unset administratively down down TOTO#conf t Enter configuration commands, one per line. End with CNTL/Z. TOTO(config) #show ip interface brief \wedge % Invalid input detected at '^' marker. TOTO (config) #do show ip interface brief Interface IP-Address OK? Method Status Protocol FastEthernet0/0 unassigned YES unset administratively down down

FORMATION CCNA 2018

Les contextes de configuration spécifique

- Il permet de configurer un paramètre spécifique du routeur ou du switch :
 - l'adresse IP d'une interface
 - le mot de passe de la ligne console
 - le mot de passe d'un protocole de routage
- Il sont identifiés par :
 - Hostname(config-X)#
- Pour rentrer dans le contexte de configuration spécifique :
 - il faut d'abord passer en contexte de configuration globale
 - puis taper la commande du contexte spécifique

Les contextes du mode PRIVILEGIE

Router# Router#configure terminal Router(config)# Router(config)#interface FastEthernet 0/0 Router(config-if)#no shutdown Router(config-if)#exit Router(config)#exit Router(config)#exit Router#

Exemples

```
TOTO#
TOTO#configure terminal
TOTO(config)#
TOTO(config) #interface fastEthernet 0/0
TOTO(config-if) #no shutdown
TOTO(config-if) #ip address 10.0.0.1 255.255.255.0
TOTO (config-if) #exit
TOTO(confiq)#
TOTO(config) #line console 0
TOTO (config-line) #password Z3Y6
TOTO (config-line) #exit
TOTO (config) #
TOTO(config) #router ospf 1
TOTO(config-router) #area 0 authentication
TOTO (config-router) #exit
TOTO (config) #
TOTO (config) #exit
TOTO#
```

Contexte de gestion

тото#

TOTO#configure terminal TOTO(config)# TOTO(config) #interface fastEthernet 0/0 TOTO(config-if) #no shutdown TOTO(config-if) #ip address 10.0.0.1 255.255.255.0 TOTO (config-if) #exit TOTO(config)# TOTO(config) #line console 0 TOTO (config-line) #password Z3Y6 TOTO (config-line) #exit TOTO (config) # TOTO(config) #router ospf 1 TOTO(config-router) #area 0 authentication TOTO (config-router) #exit TOTO(confiq)# TOTO (config) #exit тото#

FORMATION CCNA 2018

Contexte de configuration globale

```
TOTO#
TOTO#configure terminal
TOTO (config) #
TOTO (config) #interface fastEthernet 0/0
TOTO(config-if) #no shutdown
TOTO(config-if) #ip address 10.0.0.1 255.255.255.0
TOTO (config-if) #exit
TOTO (config) #
TOTO (config) #line console 0
TOTO(config-line) #password Z3Y6
TOTO (config-line) #exit
TOTO (config) #
TOTO (config) #router ospf 1
TOTO(config-router) #area 0 authentication
TOTO (config-router) #exit
TOTO (config) #
TOTO (config) #exit
TOTO#
```

Contexte de configuration spécifique à une interface

```
TOTO#
TOTO#configure terminal
TOTO(config)#
TOTO(config) #interface fastEthernet 0/0
TOTO (config-if) #no shutdown
TOTO (config-if) #ip address 10.0.0.1 255.255.255.0
TOTO (config-if) #exit
TOTO(confiq)#
TOTO(config) #line console 0
TOTO(config-line) #password Z3Y6
TOTO (config-line) #exit
TOTO (config) #
TOTO(config) #router ospf 1
TOTO(config-router) #area 0 authentication
TOTO (config-router) #exit
TOTO(confiq)#
TOTO (config) #exit
TOTO#
```

Contexte de configuration spécifique à une ligne

TOTO#
TOTO#configure terminal
TOTO(config)#
TOTO(config)#interface fastEthernet 0/0
TOTO(config-if)#no shutdown
TOTO(config-if)#ip address 10.0.0.1 255.255.255.0
TOTO(config-if)#exit
TOTO(config)#
TOTO(config)#line console 0
TOTO (config-line)# password Z3Y6
TOTO (config-line) #exit
TOTO(config)#
TOTO(config)#router ospf 1
TOTO(config-router)#area 0 authentication
TOTO(config-std-nacl)#exit
TOTO(config)#
TOTO(config)#exit
TOTO#

Contexte de configuration spécifique à un protocole de routage

TOTO# TOTO#configure terminal TOTO(config)# TOTO(config) #interface fastEthernet 0/0 TOTO(config-if) #no shutdown TOTO(config-if) #ip address 10.0.0.1 255.255.255.0 TOTO (config-if) #exit TOTO(confiq)# TOTO(config) #line console 0 TOTO(config-line) #password Z3Y6 TOTO (config-line) #exit TOTO (config) # TOTO (config) #router ospf 1 TOTO (config-router) #area 0 authentication TOTO (config-router) #exit TOTO(confiq)# TOTO (config) #exit TOTO#

Quitter un contexte de configuration spécifique

```
TOTO#
TOTO#configure terminal
TOTO(confiq)#
TOTO(config) #interface fastEthernet 0/0
TOTO(config-if) #no shutdown
TOTO(config-if) #ip address 10.0.0.1 255.255.255.0
TOTO (config-if) #exit
TOTO(confiq)#
TOTO(config) #line console 0
TOTO (config-line) #password Z3Y6
TOTO (config-line) #exit
TOTO (config) #
TOTO(config) #router ospf 1
TOTO(config-router) #area 0 authentication
TOTO (config-router) #exit
TOTO(confiq)#
TOTO (config) #exit
TOTO#
```

Quitter à la fois un contexte de configuration spécifique et le contexte de configuration globale

Utiliser la combinaison de touche [*Ctrl*] + 'Z' :

TOTO>

TOTO>enable

TOTO#

TOTO#configure terminal

TOTO(config)#

TOTO(config) #interface fastEthernet 0/0

TOTO(config-if) #no shutdown

```
TOTO(config-if)#^Z
```

Les sauvegardes

DEUX configurations

- Les switch et les routeurs ont deux types de configurations :
 - la running-configuration
 RAM
 - la startup-configuration
 NVRAM
- Les switch et les routeurs ont deux types de mémoire :
 - RAM volatile est effacée (*)
 - NVRAM non-volatile est conservée (*)
 - (*) suite à une coupure de courant

Sauvegarde

- TOTO#copy running-config startup-config
- Destination filename [startup-config]? taper sur la touche 'Entrée'
- TOTO#wr
- TOTO#write memory
- TOTO#dir nvram:

Directory of nvram:/

124	-rw-		445	<no< th=""><th>date></th><th>startup-config</th></no<>	date>	startup-config
125			24	<no< td=""><td>date></td><td>private-config</td></no<>	date>	private-config
1	-rw-		0	<no< td=""><td>date></td><td>ifIndex-table</td></no<>	date>	ifIndex-table
129016	bytes	total	(127471	bytes	free)	

Modification de la running-config

On ne peut pas modifier la startup-configuration.
on ne peut que copier la 'run' dans la 'start'

- A chaque fois qu'on saisit une commande, elle ira modifier la running-config.
 - on modifie donc la config dans la RAM.

Au démarrage

- Le switch ou le routeur ira chercher la startup-config dans la NVRAM :
 - si elle est présente, il charge cette statup-config dans la runningconfig
 - si elle n'est pas présente (*), il vous propose un dialogue de configuration
 - (*) cas d'un équipement neuf ou d'un équipement dont le registre de configuration a été modifié

Le dialogue de configuration

Lorsqu'il n'y a pas de fichier de démarrage

--- System Configuration Dialog ---

Would you like to enter the initial configuration dialog? [yes/no]: no

Les aides de la CLI

Utiliser la touche '?'

• Pour obtenir toutes les commandes qui commencent par certaines lettres.

• Exemples :

- TOTO(config) #h?
- help hostname http
 - Dans le contexte de configuration globale, il existe trois commandes qui commencent par 'h'.
- TOTO(config) #ho?
- hostname
 - Dans le contexte de configuration globale, il n'existe qu'une seule commande qui commence par 'ho'.

• Signifie que l'équipement a plusieurs pages à afficher.

- Trois possibilités :
 - appuyer sur 'Entrée' afficher 1 ligne supplémentaire
 - appuyer sur 'Barre d'espace' afficher 1 page supplémentaire
 - appuyer sur toute autre touche arrêter l'affichage

Les aides de la CLI

Utiliser la touche 'tabulation'

Auto-complétion

 L'équipement complète automatiquement la fin de chaque mot-clef d'une commande s'il n'existe qu'une seule commande avec les lettres déjà saisies.

• Exemple :

• configure terminal

Cette commande peut être simplement saisie avec :

• conf t

car il n'existe pas d'autre commande qui commence avec ces mêmes lettres.

Trois possibilités

- Saisir toute la commande :
 - configure terminal
- Ne saisir que les lettres minimales :

• conf t

- Saisir les lettres minimales + appuyer sur 'tabulation' après chaque mot-clef
 - conf[tabulation] t[tabulation]
 - s' il n' existe qu' une seule commande qui commence par les lettres saisies, l' équipement complète la commande
 - sinon il émet un 'BIP'
Exemple 1

Exemple 2

• L'auto-completion permet d'éviter les erreur de frappe. Exemple :

TOTO**#sh**►

TOTO#show ip in

TOTO#show ip interface br►

TOTO#show ip interface brief

Les aides de la CLI

Positionner le curseur

Comment corriger une commande

shpw ip interface brief

- 1^{ère} méthode :
 - utiliser les flèches de déplacement

- 2^{ème} méthode :
 - utiliser les touches de déplacement rapide

[Ctrl] + 'a' shpw ip interface brief

Positionne le curseur en début de ligne

Positionne le curseur en fin de ligne

Efface toutes les lettres entre le début de la ligne et le curseur.

[*Ctrl*] + 'w'

Efface toutes les lettres entre le mot courant et le curseur

Les aides de la CLI

Rappeler de commandes

Flèches 'haut' et 'bas'

- Elles permettent de rappeler une commande saisie précédemment.
- Par défaut, l'équipement mémorise les 10 dernières commandes.
 - enable
 - configure terminal
 - history size 30
 - taille entre 0 et 256
 - history
 - activer la mémorisation de commande (par défaut)
 - no history
 - désactiver cette mémorisation
 - exit
 - show history
 - afficher toutes les commandes déjà saisies

Configurations de base

Configurations globales

Hostname

- Par défaut :
 - 'Router' sur un routeur
 - 'Switch' sur un switch
- Il est modifié dès qu'il est configuré :
 - TOTO>enable
 - TOTO#conf t
 - TOTO (config) #hostname TATA
 - TATA(config)#

Les messages syslog

- Ces messages sont affichés à la console.
- Exemple :
 - une interface vient de tomber
 - un protocole de routage vient de découvrir un voisin
- Ces messages sont affichés même si l'administrateur est en train de saisir une commande :
 - « Interférences » entre les messages affichés et les commandes saisies par l'administrateur

Exemple d'interférence

J'active une interface, puis je configure son adresse IP :

TATA#conf t

TATA(config)#int fa0/0

TATA(config-if) #no shut

TATA(config-if) #ip add 10.0.0

*Mar 1 03:56:47.891: %LINK-3-UPDOWN: Interface FastEthernet0/0, changed state to up

*Mar 1 03:56:48.891: %LINEPROTO-5-UPDOWN: Line
protocol on Interface FastEthernet0/0, changed state
to up.1 255.255.255.0

Le message syslog a été affiché au milieu de ma commande !

Eviter les « interférences »

- TATA#conf t
- TATA(config)#line console 0
- TATA(config-line)#logging synchronous

Penser à passer cette commande sur toute nouvelle configuration

sans interférence

Les commandes en cours sont répétées après les syslogs

```
TATA#conf t
```

```
TATA(config)#int fa0/0
```

```
TATA(config-if) #no shut
```

```
TATA(config-if) #ip add 10.0.0
```

```
*Mar 1 03:56:47.891: %LINK-3-UPDOWN: Interface
FastEthernet0/0, changed state to up
```

```
*Mar 1 03:56:48.891: %LINEPROTO-5-UPDOWN: Line
protocol on Interface FastEthernet0/0, changed state
to up
```

```
TATA(config-if) #ip add 10.0.0.1 255.255.255.0
```

```
TATA(config-if)#
```

Configurations de base

Configurer une interface

Spécifier une interface

• Enable conf t interface [TYPE] [NUMERO]

- Ethernet
- FastEthernet
- GigabitEthernet
- Serial
- Loopback
- Tunnel
- etc ...

• Exemples :

- interface Ethernet 0
- interface Fasthethernet 1
- interface Serial 0

Slots

Sélectionner une interface

interface Fastethernet 0/3
dans le slot n°0: interface n°3

interface Fastethernet 2/15
dans le slot n°2 : interface n°15

Activer une interface

• Par défaut :

- sur un switch : toutes les interfaces sont déjà actives
- sur un routeur : toutes les interfaces sont inactives
- Passer d'abord en mode de configuration d'interface :

TOTO#conf t

TOTO(config) #interface fastEthernet 0/0

• Activer l'interface :

TOTO(config-if) #no shutdown

• Des messages sont affichés pour indiquer que l'interface est bien montée :

```
TOTO(config-if)#
```

*Mar 1 02:53:22.119: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up

Configurer une adresse IP sur une interface

- Passer d'abord en mode de configuration globale :
 TOTO#conf t
- Passer ensuite en mode de configuration spécifique : TOTO(config)#interface fastEthernet 0/0
- Configurer l'adresse IP de l'interface :

TOTO(config-if) #ip address 10.0.0.1 255.255.255.0

• Chaque nouvelle adresse écrase l'adresse précédente :

TOTO(config-if) #ip address 10.0.0.2 255.255.255.0

• Supprimer l'adresse IP de l'interface :

```
TOTO(config-if) #no ip address
```

Vérifier le statut de l'interface

• Plusieurs commandes disponibles :

- show ip interface brief [router]
- show interfaces status [switch]
- show interfaces

- Deux informations utiles :
 - le statut de l'interface
 - le statut de la ligne

show ip interface brief sur un routeur

	STATUS	PROTOCOL
Port opérationnel :	Up	Up
Problème couche 2 ISO :	Up	Down
Problème couche 1 (serial) ISO :	Down	Down
Port désactivé :	Administratively Down	Down

show interfaces status sur un switch

Switch#show interfaces status

Port	Name	Status	Vlan	Dupl	ex Sp	beed Type
Fa0/0		notconnect	1	auto	auto	10/100BaseTX
Fa0/1		connected	1	a-full	a-100	10/100BaseTX
Fa0/2		notconnect	1	auto	auto	10/100BaseTX
Fa0/3		notconnect	1	auto	auto	10/100BaseTX
Fa0/4		notconnect	1	auto	auto	10/100BaseTX
Fa0/5		notconnect	1	auto	auto	10/100BaseTX
Fa0/6		notconnect	1	auto	auto	10/100BaseTX

Sécurité

Protéger l'accès CONSOLE

• conf t

- line console 0
 - no login
 ne pas exiger de MDP
 - login
 exiger le MDP de la ligne
 - login local exiger le MDP de la BDD locale
 - password TOTO configurer le MDP de la ligne
 - exit
- username JULIE password JU99

configurer la BDD locale

Protéger l'accès TELNET

• conf t

- line vty 0 4
 - no login
 - login
 - login local

ne pas exiger de MDP exiger le MDP de la ligne exiger le MDP de la BDD locale

password TOTO

configurer le MDP de la ligne

• username JULIE password JU99

configurer la BDD locale

- Telnet
 tout passe en clair
- SSH tout est crypté

- Pour générer une clef asymétrique :
 - hostname
 - nom de domaine
 - image

Configurer SSH

- conf t
- hostname R1
- ip domain-name EL.COM
- crypto key generate rsa general modulus 1024
- username JULIE password JU99
- line vty 0 4
 - login local
 - transport input ssh

Protéger l'accès PRIVILEGIE

- enable password TOTO
 - ancienne commande
 - toujours disponible
- enable secret TOTO
 - nouvelle commande
 - plus difficile à décrypter
- Si les 2 sont configurés, seul le enable secret sera demandé.

Which condition indicates that service password-encryption is enabled?

- A. The local username password is in clear text in the configuration.
- B. The enable secret is in clear text in the configuration.
- C. The local username password is encrypted in the configuration.
- D. The enable secret is encrypted in the configuration.

• Réponse : C

CDP

Cisco Discovery Protocol

- Protocole propriétaire Cisco
- Objectifs :
 - découvrir des informations sur mes voisins
 - envoyer des informations à mes voisins
- L'équipement Cisco envoie ces informations :
 - toutes les 60 secondes
 - Trames en multicast
 - à l'adresse 0100.0ccc.cccc
 - quelque soit le type d'encapsulation configuré sur l'interface

Contenu des messages CDP

- Hostname
- Adresse IP
- Capacité de l'équipement
 - switching, routing, multicast
- Numéro de l'interface
- Nom de l'image IOS
- Pour un port de switch:
 - Nom de domaine VTP
 - N° du VLAN natif
 - Type d'encapsulation (access, 802.1Q, ISL)
 - Mode full ou half-duplex

Validité des messages CDP

• Sur réception d'un message CDP, l'équipement le considère valide pendant une durée limitée :

• HOLD timer

par défaut 180 sec

- L'équipement envoie des messages CDP sur toutes les interfaces où CDP est activée, à fréquence fixe :
 - HELLO timer par défaut 60 sec
Activer CDP

R1#configure terminal R1(config)#no cdp run R1(config)#cdp run

désactiver CDP globalement activer CDP globalement

R1(config)#int s0/0
R1(config-if)#cdp enable
R1(config-if)#no cdp enable

activer CDP sur l'interface désactiver CDP sur l'interface

Exercice

gauche#show cdp neighbors

Capability Codes: R - Router, T - Trans Bridge, B - Source Route Bridge S - Switch, H - Host, I - IGMP, r - Repeater

Device ID	Local Intrfce	Holdtme	Capability	Platform	Port ID
?	?	174	R S I	3550	?

FORMATION CCNA 2018

Solution

LLDP = 802.1AB

Présentation

- Similaire à CDP :
 - CDP : propriétaire Cisco
 - actif par défaut sur tout équipement Cisco

• LLDP : standard IEEE

- actif ou non selon les modèles
- Avantage :
 - Hautement configurable
 - Utilise les TLV (Type Length Value)
- Désavantage :
 - Charge

Configuration

- Activer sur un équipement :
 - •Conf t
 - lldp run
- Désactiver sur une interface:

•Interface X

- No lldp enable
- Vérifier :

Switch# show lldp

Global LLDP Information: Status: ACTIVE LLDP advertisements are sent every 30 second LLDP hold time advertised is 120 seconds

Configuring LLDP (Cont.)

Enable or disable LLDP globally.

[no] lldp run

Enable or disable LLDP on an interface.

[no] lldp transmit
[no] lldp receive

Exemple

Switchl# show lldp neighbors

Capability codes:

(R) Router, (B) Bridge, (T) Telephone, (C) DOCSIS Cable Device(W) WLAN Access Point, (P) Repeater, (S) Station, (O) Other

Device ID	Local Intf	Hold-time	Capability	Port ID
Switch2	Fa0/11	120	В	Fa0/22
Branch	Fa0/23	120	R	Gi 0/0
Total entries	displayed: 2			

show lldp neighbor detail

Chassis id: 001e.145e.4984 Port id: LINK TO SWITCH1 Port Description: FastEthernet0/22 System Name: Switch2.cisco.com

System Description: Cisco IOS Software, C2960 Software (C2960-LANBASEK9-M), Version 15.2(44)SE6, RELEASE SOFTWARE (fc1) Copyright (c) 1986-2009 by Cisco Systems, Inc. Compiled Mon 09-Mar-12 18:10 by gereddy

Time remaining: 94 seconds
System Capabilities: B,R
Enabled Capabilities: B
Management Addresses:
 IP: 10.1.1.12
Auto Negotiation = supported, enabled
Physical media capabilities:
 10base=T(HD)
 10base=T(FD)
 100base=TX(HD)
 100base=TX(FD)
Media Attachment Unit type: 16

Which statement about LLDP is true?

- A. It is a Cisco proprietary protocol.
- B. It is configured in global configuration mode.
- C. The LLDP update frequency is a fixed value.
- D. It runs over the transport layer.

• Réponse : B

DHCP

Mécanisme DHCP

- 1. DISCOVER
 IP src 0.0.0.0
 - IP dest 255.255.255.255
- 2. OFFER (unicast)
 - une adresse IP
 - masque
 - l' @ IP de passerelle
 - l' @ IP des serveurs DNS
 - le lease time
 - etc...
- 3. REQUEST (broadcast)
 intention d'accepter l'offre
- 4. ACK
 - confirmation fin du processus

FORMATION CCNA 2018

v3-3.0 192

@ destination

	@ MAC destination	@ IP destination
Discover	FFFF.FFFF.FFFF	255.255.255.255
Offer	@ MAC du client	0.0.0.0
Request	FFFF.FFFF.FFFF	
Ack	@ MAC du client	

- Le bail est attribué pour une période.
 - Le client contacte périodiquement le serveur DHCP pour renouveler son bail et conserver la même adresse IP.
- Avant d'offrir une adresse à un client, le serveur peut vérifie que cette adresse n'est pas déjà attribuée en faisant des ping ou des ARP gratuits.
 - En cas de conflit, l'adresse est inutilisée : show ip dhcp conflict
 - Nécessite l'intervention de l'administrateur

Router = server DHCP

• conf t

- ip dhcp excluded-address 192.168.10.250 192.168.10.254
- ip dhcp pool TOTO
 - domain-name X
 - network 192.168.10.0 255.255.255.0
 - Ou : network 192.168.10.0 /24
 - default-router 192.168.10.254
 - dns-server 192.160.1.1

Activer la fonction DHCP

- La fonction DHCP est automatiquement activée dès qu'une adresse IP est attribuée à une interface du routeur, dans la plage de pool
- conf t
- int fa0/0
- ip address 192.168.10.254 255.255.255.0

Cisco Device as DHCP a Relay Agent

FORMATION CCNA 2018

Cisco Device as a DHCP Relay Agent (Cont.)

Network Time Protocol

Correct time within networks is important for the following reasons:

- Correct time allows the tracking of events in the network in the correct order.
- Clock synchronization is critical for the correct interpretation of events within syslog data.
- Clock synchronization is critical for digital certificates.

Network Time Protocol (Cont.)

NTP provides time synchronization between network devices.

- NTP can get the correct time from an internal or external time source:
 - Local master clock
 - Master clock on the Internet
 - GPS—global positioning system or atomic clock
- A router can act as an NTP server and client. Other devices (NTP clients) synchronize time with the router (NTP server).

Configuring NTP

Configure the Branch router as an NTP client, which will synchronize its time with the NTP server.

Branch(config) # ntp server 209.165.201.15

Configure the SW1 switch as an NTP client, which will synchronize its time with the Branch router.

SW1(config) # ntp server 10.1.1.1

Configure and Verify NTP

Step 1: Review the clocks on SW1, SW2 and R1. Step 2: Configure R1 as an NTP server.

R1(config) # ntp master

Step 3: Configure SW2 to use R1 as its NTP server.

SW2(config) # ntp server 10.10.1.1

Step 4: On SW2, display the current NTP associations and NTP status.

```
SW2# show ntp associations
address ref clock st when poll reach delay offset disp
*~10.10.1.1 127.127.1.1 8 49 64 1 0.000 0.000 189.47
* sys.peer, # selected, + candidate, - outlyer, x falseticker, ~ configured
SW2# show ntp status | include Clock is
Clock is synchronized, stratum 9, reference is 10.10.1.1
```

Configure and Verify NTP (Cont.)

Step 5: The clocks on the SW2 and R1 should be synchronized.
Step 6: On R1, configure the CET time zone.

R1(config) # clock timezone CET 2

Step 7: On R1, display the current time and observe that the time zone has changed.

R1# show clock 10:53:05.222 CET Tue Nov 24 2015

Architecture interne

Architecture interne

ROM	FLASH
RAM	NVRAM

ROM

 Instructions du POST, Power On Self Test Rxboot ou bootstrap Programme d'amorçage 	FLASH
RAM	NVRAM

FLASH

ROM	Image = IOS
RAM	NVRAM

NVRAM

ROM	FLASH
RAM	Startup- configuration

ROM	FLASH
 Running-config Table d'@MAC Table de routage Paquets etc 	NVRAM

write

ROM	FLASH
RAM	NVRAM
Running-config	> <mark>Startup-config</mark>

Au démarrage...

Choisir une autre image

- Si plusieurs images IOS dans la flash
 - Laquelle prendre ?
- Le choix sera fait selon le dernier chiffre du registre de configuration
 - 0x2100 ne prendre aucune image
 - 0x2101 prendre la 1ère image de la Flash
 - Ox2102 se reférer aux commandes
 boot system

Commandes boot system

• conf t

- boot system flash:IOS2.bin
- boot system tftp://10.0.0.1/IOS.bin

- Pour vérifier la valeur du registre de configuration :
 - Show version
- Pour vérifier l'espace disque sur la flash :
 - Show flash

Quel fichier de conf charger ?

- Le choix sera fait selon l'avant-dernier chiffre du registre de configuration
 - 0x2102 prendre la startup de la NVRAM
 - 0x2142 ne pas charger de startup

• Quelle utilité de modifier ce registre ?

Perte de mot de passe

- 1. Séquence « break »
- 2. Rommon 1>confreg 0x2142
- 3. Rommon 2>reset (ou i, ou redémarrer)
- 4. Enable
- 5. Copy start run
- 6. Conf t
- 7. Enable secret TOTO
- 8. Config-register 0x2102
- 9. Réactiver les interfaces (no shut)
- **10.** End
- 11. write

show version

Router1#show version

Cisco IOS Software (C2600-ADVIPSERVICESK9-M), Version 12.3(4)T4, ROM: System Bootstrap, Version 12.2(8r) [cmong 8r], RELEASE SOFTWARE (fc1) Router1 uptime is 20 minutes System returned to ROM by power-on System image file is "flash:c2600-advipservicesk9-mz. 123-4.T4.bin Cisco 2621XM (MPC860P) processor (revision 0x300) with 125952K/5120K bytes of memory. Processor board ID JAE081160XR (3618058385) M860 processor: part number 5, mask 2 2 FastEthernet interfaces 32K bytes of NVRAM. 32768K bytes of processor board System flash (Read/Write) Configuration register is 0x2102

Switching
Differents types de cables : Droits, Croisés, Rollover

3 types de cables

Le cable droit

• Le cable droit connecte des équipements de nature différentes.

- Pour interconnecter les switchs
- Connecte les port de même nature

Droit, versus croisé

Le cable Rollover

- Permet de se connecter à la console
- La console est un accès "hors bande" par opposition aux accès via Telnet ou SSH

LED : statut du port Ethernet

LED	Signification
Eteint	Pas de liaison présente
Orange	Port désactivé (administrativement, ou suite à une violation de sécurité)
Vert	Liaison opérationnelle, sans trafic
Vert clignotant	Liaison opérationnelle, avec trafic
Alternatif Vert & Orange	Erreurs (collision, CRC)

Description Ethernet

Le principe d'encapsulation

- Pour envoyer une donnée 'XYZ', l'expéditeur encapsule cette donnée 'XYZ' dans une trame :
- Donnée à envoyer : xyz
- Cette donnée est encapsulée dans une trame :

Ethernet Frame Structure

Field Length (Bytes)	8	6	6	2	46-1500	4
Typical Ethernet Frame	Preamble	Destination Address	Source Address	Туре	Data	FCS

Définition d'une trame

- L'entête de la trame Ethernet contient :
 - l'adresse MAC destination
 - l'adresse MAC source
 - le type
- La partie utile

6 octets

6 octets

2 octets

- Le pied de la trame Ethernet contient :
 - FCS, Frame Check Sequence 4 octets

14

Taille de la trame

• Taille maximale de la trame :

• = 14 + 1500 + 4 = 1518 octets

- Taille minimale de la trame :
 - = 14 + 46 + 4 = 64 octets
 - si la partie utile fait moins de 46 octets, des octets de bourrages sont rajoutés

Le 'type' de la trame

- Il identifie le protocole de la donnée encapsulée :
 - Exemples :
 - si 'XYZ' est en IP, alors 'type' = 0x800
 - si 'XYZ' est en ARP, alors 'type' = 0x806

La trame 802.3

- La trame Ethernet n'est pas conforme au modèle OSI qui exige l'indépendance entre les couches :
 - la trame Ethernet n'indique pas la longueur de la partie utile.
- La trame 802.3 est conforme au modèle OSI :
 - le champ 'Type' est remplacé par un champ 'Longueur'
 - un champ supplémentaire est rajouté : le 'préambule'

Adresse MAC

- Chaque carte réseau est identifiée par une adresse unique au monde ^(*) : l'adresse MAC.
 - BIA = Burned In Address
 - Inscrite sur la NIC = Network Interface Card
 - 12 caractères héxadécimaux
 - Exemples :
 - 0007.1234.abcd = 00:07:12:34:ab:cd
 - a123.b587.ef7f = a1:23:b5:87:ef:7f

(*) l'unicité est garantie lorsque le 7^{ème} bit est égal à 0.
Si le 7^{ème} bit vaut 1, alors il s'agit d'une adresse MAC administrée localement.

Unicité de l'adresse MAC

- L'adresse MAC est composée de 2 parties :
 - partie 'O.U.I.' :
 - Organizational Unique Identifier
 - 3 octets
 - attribués par IANA
 - partie 'constructeur'
 - 3 octets
 - attribués par le Constructeur

Ethernet

Les trois types de trames

Types de trames

Unicast

 un équipement veut parler avec un autre équipement

• Broadcast :

• un équipement veut parler avec tous les autres équipements de son réseau.

• Multicast :

 un équipement veut parler avec plusieurs autres équipements mais pas tous

Intérêts d'un broadcast

Intérêts d'un broadcast

- Réduire la charge sur le réseau.
- L'expéditeur n'a besoin de créer qu'une seule trame.

- Par contre :
 - tous les équipements du réseau doivent écouter cette trame, la désencapsuler et étudier sa partie utile... même s' ils ne sont pas concernés !

Multicast

- Utiliser l'adresse MAC destinataire qui identifie les membres du groupe multicast :
 - le 8^{ème} bit est égal à 1
 - exemple : 0100.5E01.1111

• Exemple : multicast de A pour 0100.5E01.1111

Intérêts d'un multicast

- Réduire la charge sur le réseau.
- L'expéditeur n'a besoin de créer qu'une seule trame.
- Seuls les équipements intéressés écoutent ces trames, la désencapsulent et étudient sa partie utile.
 - les équipements qui ne sont pas membres du groupe multicast ne sont pas dérangés par ces trames
 - la charge de leur CPU est réduite.

Intérêts d'un multicast

Ethernet

Les collisions

CSMA / CD : toutes les étapes

Un équipement veut envoyer une trame sur le réseau :

- 1. Il écoute le réseau pour voir s'il est libre.
- 2. Si le réseau est libre, il commence à déposer sa trame
- 3. Il continue à écouter le réseau pour vérifier qu'il est le seul à l'utiliser
 - 1. il compare ce qu'il dépose sur le réseau avec ce qu'il entend sur le réseau
- 4. S' il y a divergence, cela signifie qu' une collision a eu lieu :
 - 1. il arrête d'émettre et attend un temps aléatoire.
- 5. Il essaie à nouveau d'émettre après l'écoulement du temps aléatoire.

1. Ecouter le réseau

• Y a-t-il déjà du trafic sur le réseau ?

2. A dépose sa trame

- Pas de trafic.
- La voie est libre.
- A dépose sa trame et continue à écouter
- A vérifie que ses données ne sont pas perturbées par l'émission d'un aute équipement

3. Propagation de la trame

• La trame déposée par A se propage dans le réseau.

• Elle n' a pas encore atteint D

• D veut également envoyer une trame.

4. D dépose sa trame

• La trame de A n' a pas atteint D.

• D écoute le réseau : il croit que le réseau est libre.

• D dépose sa trame

4. Collision

• Les 2 trames se rencontrent.

- Les trames n'ont pas pu être entièrement déposées sur le réseau :
 - on parle alors de fragments

5. Détection de la collision

• A et D constatent qu'il y a divergence entre ce qu'ils envoient et ce qu'ils entendent.

6. Arrêt de l'émission

• A et D arrêtent d'émettre leur trame.

• Ils emmettent un signal de bourrage pour avertir tout le segment de la collision

• Chacun attent un certain temps calculé de manière aléatoire.

6. Nouvel essai

• D attend plus longtemps que A.

• Donc A essaie à nouveau d'émettre : il commence par écouter le réseau.

CSMA / CD

• CS

• Carrier Sense :

• l'équipement écoute le réseau

• MA

• Multiple Access :

 attention : plusieurs équipements peuvent vouloir accéder au réseau en même temps (= collision)

• CD

• Collision Detection :

• il faut donc un mécanisme pour détecter ces collisions

FORMATION CCNA 2018

v3-3.0 250

Ethernet

Le HUB

Fonctionnement du HUB

• Il reçoit une trame sur une interface.

• Il la duplique sur toutes les autres interfaces, quel que soit le type de trame : unicast, broadcast, multicast
Domaine de collision

 Tous les équipements placés autour d'un même HUB peuvent avoir des collisions entre eux :

• Ils sont dans le même domaine de collision.

Domaine de collision

- Si une collision se produit sur un segment :
 - il se répand sur tous les segments autour du HUB
 - tout le réseau est impacté
 - aucun équipement ne peut utiliser la bande passante

Combien de domaines de collision?

Un seul

Domaine de broadcast

• Un équipement placs autour d'un HUB reçoit les broadcasts de tous les équipements placés autour de ce HUB :

• Ils sont dans le même domaine de broadcast.

Test

- Combien de domaines de collision ?
- Combien de domaines de broadcast ?

Ethernet

Le PONT

Fonctionnement du PONT

- Le PONT a une mémoire sur chaque interface.
 - Il est donc capable de conserver des trames dans cette mémoire, le temps que la voie devienne libre.
 - Il écoute sur chaque interface, avant de faire suivre une trame.
 - Les fragments restent confinés dans leur domaine de collisions.

Domaine de collision

 Il ne peut y avoir de collisions qu'entre les équipements placés sur un même port du PONT

• Chaque port possède son propre domaine de collision.

Domaine de collision

• Une collision sur un segment n'affecte pas les autres segments.

 Le pont a découpé le domaine de collision en plusieurs domaines de collision plus petits.

Exercice

Combien y a-t-il de domaines de collision ?

Fonctionnement du pont

Lorsqu'il reçoit une trame :

1. il regarde l'adresse MAC source de la trame et <u>met à</u> <u>jour sa table</u>

2. il cherche l'adresse MAC destination de la trame pour savoir sur quelle interface <u>faire suivre la trame</u>.

Fonctionnement du pont

- S' il ne trouve pas l' adresse Mac destination dans sa table :
 - il s' agit d' un 'unknown unicast'
 - il duplique la trame sur toutes ses interfaces, sauf celle où il l'a reçue.
 - C' est un unicast flooding
- Si l'adresse Mac de destination est broadcast (FFFF.FFF.FFFF) ou multicast :
 - il duplique la trame sur toutes ses interfaces, sauf celle où il l'a reçue.

Solution 1

Solution 1, suite

Solution 2, suite

Exercice 3

Solution 3

Solution 3, suite

Exercice 4

Solution 4

	• Il ta	Il met à jour le timer de sa table pour l'adrersse aaaa.		
	ffff.ffff a	aaa 0x800	XYZ	FCS
B	· · · · ·	•••••		
3 4	Ad	resse MAC	Interface	Timer
		bbbb	3	250
		3333	1	244
		aaaa	4	300

Solution 4, suite

Exercice 5

 Que contient la table d'adresses Mac quand tout le monde a parlé ?

Adresse MAC	Interface

Solution 5

 Que contient la table d'adresses Mac quand tout le monde a parlé ?

Adresse MAC	Interface
aaaa	2
bbbb	2
CCCC	1
dddd	1

Exercice 6

	 Voici la trame le pont ? 	reçue : que f	ait
dddd	aaaa 0x800	XYZ	FCS
2	Adresse MAC	Interface	
	aaaa	2	
	bbbb	2	
	CCCC	1	
	dddd	1	

Solution 6

	 Il met à jour le table pour l'ad 	timer de s resse aaaa	a
bbbb	aaaa 0x800	XYZ	FCS
	Adresse MAC	Interface	Timer
	aaaa	2	300
	bbbb	2	250
	CCCC	1	111
	dddd	1	222

Solution 6, suite

Bilan : l'algorithme 802.3

Test

• Que fera le switch s' il reçoit une trame avec @ destination 00b0.d056.efa4 ?

Dynamic Addresses	Count:	•	3
Secure Addresses (L	lser-defined) C	ount	0
Static Addresses (Us	er-defined) Co	unt	0
System Self Address	es Count:	4	1
Total Mac addresses	2	5	0
Non-static Address T	able:		
Destination Address	Address Type	VLAN	Destination Port
0010.0de0.e289	Dynamic	1	FastEthernet0/1
0010.7b00.1540	Dynamic	2	FastEthernet0/3
0010 7600 1545	Dynamic	2	EastEthernet0/0

Ethernet

Le switch ou commutateur

Avantages du switch

- Collisions :
 - fonctionne comme le pont
- Table de Mac addresses :
 - fonctionne comme le pont
- Nombre de ports :
 - peut avoir de nombreux ports !
 - plusieurs cartes de 48 ports chacuns
 - tous les ports n' ont pas obligatoirement la même vitesse
 - sur la même carte, des ports à 100 Mb/s, 1 Gb/s, 10 Gb/s
- Rapidité :
 - beaucoup plus rapide que le pont
 - utilise des ASICs : Application Specific Integrated Circuits.

La diversité du 'speed'

Les ports à 1 Gb/s sont appelés 'uplink'.

Ils sont reliés à d'autres switch et permettent d'aggréger le trafic reçu sur pluseurs ports à 100 Mb/s
La densité de ports

- Le switch a beaucoup de ports.
- Il devient possible de ne mettre qu'un seul équipement (PC, imprimante, serveur) sur chaque port du switch.

Micro-segmentation :

Full-duplex

 S' il n' y a que 2 équipements sur un même segment ^(*), alors il n' y a pas de collision :

• pas de CSMA / CD

 chaque équipement peut émettre et recevoir en même temps

(*) et si les 2 cartes réseau savent fonctionner en full-duplex

Test

- Combien de domaines de collision ?
- Combien de domaines de broadcast ?

• 5 • 1

Test

- Combien de domaines de collision ?
- Combien de domaines de broadcast ?

• 7 • 2

Duplex mismatch

Redirection de ports (Source Port Analyser)

Redirection de ports SPAN

SWl(config) # monitor session 1 source interface FastEthernet0/2 both
SWl(config) # monitor session 1 destination interface FastEthernet0/0

Sécurité des accès

Mitigating Threats at Access Layer

You can mitigate most access layer threats with these features:

- Port security: Restricting a port to a specific set of MAC addresses
- DHCP snooping: Preventing rogue DHCP servers
- Dynamic ARP Inspection (DAI): Preventing ARP attacks
- Also, implement identity-based networking to protect network resources and provide user mobility.

Identity-Based Networking

Port Security : Objectif

- Seul l'équipement dont l'adresse MAC est aaaa.aaaa.aaaa est autorisé à se connecter au port Fa0/8
- Possible de configurer plusieurs MAC en présence d'un HUB
- Impossible à configurer sur les ports :
 - Trunk Dynamic
 - EtherChannel (aggrégation de liens)
 - Voice VLAN (sur les port de téléphones IP)

Méthode n°1

méthode fastidieuse : il faut saisir chaque adresse Mac !

Méthode n°2

configure terminal

interface fa0/8

switchport port-security maximum 1

→ n' autoriser qu' une seule adresse Mac

switchport port-security

Fa0/8

➔ activer la fonctionalité 'port-security'

Si aucune adresse Mac n'est configurée statiquement :

→ la première trame reçue fixera l'adresse Mac autorisée.

méthode dangeureuse : il suffit de couper le courant et le switch acceptera l'adresse Mac de tout nouvel équipement connecté au port Fa0/8 !

Méthode n°3

configure terminal

interface fa0/8

switchport port-security maximum 1

aaaa.aaaa.aaaa

Fa0/8

➔ n' autoriser qu' une seule adresse Mac

switchport port-security mac-address sticky

- → autoriser l'adresse Mac de la 1^{ère} trame reçue
- → et enregistrer cette adresse dans la mémoire ('running-config')

switchport port-security

➔ activer la fonctionalité 'port-security'

penser à sauvegarder la configuration :
write ou write memory ou copy run start

Trois modes de violation

- Si le switch reçoit une trame dont l'adresse Mac source n'est pas autorisée :
 - il peut couper l'interface
 - l'interface se trouve en état 'error-disabled'
 - personne ne pourra alors utiliser cette interface, même les adresses Mac autorisées
 - l'administrateur devra saisir shutdown puis no shutdown pour réactiver l'interface
 - on peut aussi configurer le switch pour réactiver l'interface demanière automatique au bout d'un certain temps
 - il peut détruire la trame et informer l'administrateur :
 - via un message à la console
 - via un message à une serveur SNMP
 - il peut détruire la trame sans informer l'administrateur

Configurer les modes de violation

configure terminal

interface fa0/8

switchport port-security violation shutdown

→ couper l'interface

➔ mode par défaut

switchport port-security violation restrict

→ détruire les trames interdites et informer

switchport port-security violation protect

→ détruire les trames interdites sans informer

Suite à une violation

Switch# show interfaces f0/13

. . .

FastEthernet0/13 is down, line protocol is down (errdisabled)

Hardware is Fast Ethernet, address is 0099.1234.1234 (bia 0099.1234.1234)

MTU 1500 bytes, BW 100000 Kbit, DLY 100 usec,

reliability 255/255, txload 1/255, rxload 1/255

Encapsulation ARPA, loopback not set

Identity-Based Networking

Identity-based network verifies the users when they connect regardless of their physical location.

IEEE 802.1x standard defines the identity-based networking.

DHCP snooping is a Layer 2 security feature that validates the DHCP messages.

DAI tracks IP-to-MAC bindings from DHCP transactions to protect against ARP poisoning. DHCP snooping is required, to build MAC-to-IP bidings for DAI validation.

External Authentication Options

Using the local database for AAA implementation on network devices does not scale well.

Ethernet

Le modèle hiérarchique

Conception d'un LAN

- On utilisera classiquement :
 - des switchs à chaque étage
 - nommés « switch d' accès »
 - directement connectés aux PCs
 - des switchs pour relier les étages entre eux
 - nommés « switch de distribution »
 - connectés aux switch d'accès

Exemple

le switch de distribution est alors un point de défaillance du réseau

Redondance

On utilisera **DEUX** switchs de distribution.

Cette redondance apportera des difficultés supplémentaires, qui seront résolues par le protocole STP.

VLAN

Virtual Local Area Network

Problèmes du LAN à plat

- Chaque broadcast innonde le réseau
 - consomme la bande passante du réseau
 - consomme du CPU sur les hôtes
- Chaque multicast innonde le réseau.
 consomme la bande passante du réseau

• Chaque 'unknown unicast' est envoyé sur tous les ports du switch

- consomme la bande passante du réseau
- présente des risques de sécurité

Domaine de broadcast

 Un équipement placé autour d'un SWITCH reçoit les broadcasts de tous les équipements placés autour de ce SWITCH :

• Ils sont dans le même domaine de broadcast.

Exercice 1

Combien y a-t-il de domaine de broadcast ?

Solution 2

Un seul domaine de broadcast !

Exercice 2

Combien y a-t-il de domaine de broadcast ?

Solution 2

Un seul domaine de broadcast !

Comment limiter la diffusion des broadcast ? des multicast ? des unknown unicast ?

Diviser le domaine de broadcast en plusieurs domaines de broadcast

Les VLANs

• Créer plusieurs VLANs sur le switch

- Chaque VLAN représente un domaine de broadcast :
 - le switch ne permettra aucune communication entre 2 VLANs
- Chaque VLAN est identifié par un numéro entre 1 et 4096

Exemple: 2 VLANs

Créer 2 VLANs sur un switch :
le VLAN n° 100
le VLAN n° 200

• Attribuer :

- certains ports au VLAN 100
- certains ports au VLAN 200

Exemple: 2 VLANs

• Quel que soit le type de trame (unicast, broadcast, multicast), seules les communications suivantes seront possibles :

• A et B

• C et D

Aucune autre communication ne sera autorisée par le switch !

Exemple: 2 VLANs

• Deux domaines de broadcast.

- les domaines de broadcast sont plus petits.
- la bande passante est utilisée de manière plus efficace.
- la CPU des équipements est moins sollicitée.
- le switch maintient 2 tables d'adresses MAC.

Vue logique des VLANs

• Tout se passe comme s' il y avait plusieurs switchs :

VLAN

Configuration
Le VLAN par défaut

 Il existe toujours un VLAN sur les switch CISCO : le VLAN n°1.

• Tous les ports appartiennent à ce VLAN.

 Impossible de supprimer le VLAN n°1, ni de changer son nom : 'default'.

Deux étapes

CRÉER les VLANs :

AFFECTER les interfaces aux VLANs :

Deux étapes

CRÉER les VLANs :

ANCIENNE METHODE :

NOUVELLE METHODE :

configure terminal

vlan	data	abase		vlan	100	
vlan	100	name	ТОТО	name	TOTO	
vlan	200	name	TATA	vlan	200	
exit				name	TATA	

AFFECTER les interfaces aux VLANs :

Deux étapes

CRÉER les VLANs :

	NOUVELLE METHODE :
ANCIENNE METHODE :	configure terminal
vlan database	vlan 100
vlan 100 name TOTO	name TOTO
vlan 200 name TATA	vlan 200
exit	name TATA

AFFECTER les interfaces aux VLANs :

configure terminal interface Fa0/0 switchport mode access switchport access vlan 100

Vérifier les VLAN

- Show vlan-switch (dans les TPs)
- Show vlan brief
- Show vlan Id (suivi du numéro de VLAN)

VLAN

Implémentation

Implémentation n°1

- Objectifs recherchés :
 - segmentation
 - flexibilité
 - sécurité

Implémentation n°2

- Objectifs recherchés :
 - chaque VLAN regroupe un certain type de trafic :
 - Data
 - Management réseau
 - Voix
 - accès invités
 - Wi-Fi
 - Imprimantes

FORMATION CCNA 2018

VLAN

Liaisons « Trunk »

Un VLAN sur plusieurs switchs

• Le VLAN 100 est utilisé sur les 2 switch.

• Comment permettre aux équipements A et B de communiquer ensemble ?

Un VLAN sur plusieurs switchs

• Le VLAN 100 est utilisé sur les 2 switch.

• Affecter l'inter-switch au VLAN 100

FORMATION CCNA 2018

Trois VLAN sur plusieurs switchs

• Les VLAN 100, 200 et 300 sont utilisés sur les 2 switch.

• Comment permettre aux équipements d'un même VLAN de communiquer ensemble ?

FORMATION CCNA 2018

Trois VLAN sur plusieurs switchs

• Les VLAN 100, 200 et 300 sont utilisés sur les 2 switch.

 Consommer 3 ports pour interconnecter les 2 switches ?!

peu efficace !

Trois VLAN sur plusieurs switchs

- Les VLAN 100, 200 et 300 sont utilisés sur les 2 switch.
 - Configurer l'interco entre les 2 switchs en mode TRUNK :

- Tous les VLANs seront autorisés sur l'interface trunk
- Sur l'interface trunk, les trames seront taggées avec le n° du VLAN

Le TAG 802.1Q

• Trame originale, non taggée :

• Trame modifiée, taggée :

v3-3.0 339

FCS recalculée !

• Trame originale, non taggée :

A quoi sert le TAG ?

• Il permet d'indiquer au switch distant à quel VLAN appartient la trame envoyée.

- Le switch distant saura alors quelle table d'adresse Mac utiliser pour forwarder cette trame.
 - Rappel : chaque VLAN possède sa propre table d'adresse Mac.

Exemple 1/3

- A génère cette trame.
- Elle n' est pas taggée :

Mac D	Mac S	Туре	XYZ	FCS
		L		

Sw1

Exemple 2/3

FORMATION CCNA 2018

Exemple 3/3

VLAN

Configurer le « Trunk »

Passer une interface en mode trunk

- configure terminal
- interface fa0/0
- switchport mode trunk

les <u>DEUX</u> switchs doivent passer en mode trunk !

Quitter le mode trunk

- configure terminal
- interface fa0/0
- switchport mode access
- switchport access vlan 100

pour repositionner l'interface dans le VLAN 100

Vérifier le trunk

Sw1#show interfaces trunk

Port	Mode	Encapsulation	Status	Native vlan	
Fa0/0	on	802.1q	trunking	1	
Port	Vlans allowed	l on trunk			
1010	vians arrowed				
Fa0/0	0 1-1005				
Port	Vlans allowed	d and active in	management dor	nain	
Fa0/0	1				
Port	Vlans in spar	nning tree forwa	arding state ar	nd not pruned	
Fa0/0	1				

FORMATION CCNA 2018

Les modes dynamiques

 On peut laisser les switchs communiquer entre eux et décider dynamiquement s'ils doivent passer en trunk :

configure terminal interface fa0/0 switchport mode dynamic auto • je passerai en trunk si mon voisin me le demande.

switchport mode dynamic desirableje demande à mon voisin s'il accepte de passer en trunk.

Définitions

Mode administratif :

• c'est le mode configuré sur l'interface :

- access
- trunk
- dynamic auto
- dynamic desirable
- Mode opérationnel :
 - c' est le mode dans lequel fonctionne l'interface :
 - access
 - trunk

Vérifier les modes :

Sw1#show interface fa0/0 switchport

Name: Fa0/0

Switchport: Enabled

Administrative Mode: trunk

Operational Mode: trunk

Administrative Trunking Encapsulation: dot1q

Operational Trunking Encapsulation: dot1q

Negotiation of Trunking: Disabled

Table de correspondances

	access	trunk	dynamic desirable	dynamic auto
access	access			
trunk	A A	trunk		
dynamic desirable	access	trunk	trunk	
dynamic auto	access	trunk	trunk	access

VLANs autorisés

- On peut limiter la liste des VLANs autorisés à emprunter une interface :
- configure terminal
 interface fa0/0
- switchport trunk allowed vlan 1,100-200
 liste exhaustive des VLANs autorisés
- switchport trunk allowed vlan add 300
 - ajouter le vlan 300 à la liste actuelle
- switchport trunk allowed vlan remove 100
 - retirer le vlan 100 à la liste actuelle
- switchport trunk allowed vlan except 400
 - autoriser tous les VLANs sauf le vlan 400
- switchport trunk allowed vlan all
 - autoriser tous les VLANs

Vérifier les VLANs autorisés 1/2

Sw2#show interfaces fastEthernet 0/0 switchport

```
Name: Fa0/0
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: Disabled
Access Mode VLAN: 0 ((Inactive))
Trunking Native Mode VLAN: 1 (default)
Trunking VLANs Enabled: 1-199,1001-1005
Trunking VLANs Active: 1,100
trust: none
```

•••

Vérifier les VLANs autorisés 2/2

Sw2#show interfaces trunk

Port	Mode	Encapsulation	Status	Native vlan
Fa0/0	on	802.1q	trunking	1

- Port Vlans allowed on trunk
- Fa0/0 1-199,1001-1005
- Port Vlans allowed and active in management domain
- Fa0/0 1,100
- Port Vlans in spanning tree forwarding state and not pruned Fa0/0 1,100

FORMATION CCNA 2018

Test

Pourquoi les équipements situés dans le même VLAN et sur 2 switch différents n' arrivent pas à communiquer ensemble ?

VLAN

Le Vlan Natif

Définition

• Le trunk rajoute un TAG sur les trames.

 Exception : si une trame appartient au VLAN dit « natif », elle ne sera pas taggée.

• Par défaut, le vlan « natif » est le VLAN 1

Exemple d'utilisation du VLAN natif

Configurer le Vlan Natif

- configure terminal
- interface fa0/0
- switchport mode trunk
- switchport trunk native vlan 10

les <u>DEUX</u> switchs doivent utiliser le même Vlan Natif sur le lien qui les interconnecte !
Vérifier le vlan Natif 1/2

```
Sw2#show interfaces fastEthernet 0/0 switchport
Name: Fa0/0
Switchport: Enabled
Administrative Mode: trunk
Operational Mode: trunk
Administrative Trunking Encapsulation: dot1q
Operational Trunking Encapsulation: dot1q
Negotiation of Trunking: Disabled
Access Mode VLAN: 0 ((Inactive))
Trunking Native Mode VLAN: 100 (TOTO)
Trunking VLANs Enabled: 1-199,1001-1005
Trunking VLANs Active: 1,100
Priority for untagged frames: 0
```

•••

Vérifier le vlan Natif 2/2

Sw2#show interfaces trunk

Port	Mode	Encapsulation	Status	Native vlan
Fa0/0	on	802.1q	trunking	100

- Port Vlans allowed on trunk
- Fa0/0 1-199,1001-1005
- Port Vlans allowed and active in management domain
- Fa0/0 1,100
- Port Vlans in spanning tree forwarding state and not pruned Fa0/0 1,100

Native Vlan Mismatch

- Que se passe-t-il si le Vlan Natif n' est pas le même des deux côtés du trunk ?
 - aucune communication ?
 - mauvaise communication ?

Bilan des commandes trunk

- configure terminal
- interface fa0/0
- switchport trunk allowed vlan 1-3
- switchport trunk native vlan 100
- switchport mode trunk

sur les DEUX côtés du trunk !

VTP

Vlan Trunking Protocol

VTP

- Protocole propriétaire CISCO
- Objectif : diffuser sur l'ensemble du réseau les créations / modifications / suppressions de VLANs.
- Méthode : envoyer des messages VTP
 - toutes les 5 minutes
 - après chaque modification
 - sur toutes les interfaces trunk
 - en multicast
 - dans le VLAN 1
 - avec la liste des VLANs à jour

Server et Client

- Le switch VTP server :
 - celui sur lequel l'administrateur configure les Vlans
- Les switchs VTP client :
 - ceux qui synchronisent leurs bases de données avec les messages VTP reçus
- Et si le switch VTP server tombe en panne ?

Plusieurs VTP server.

L'indice de révision

- Au démarrage, l'indice est égal à 0.
- L'indice est incrémenté de 1 à chaque fois qu'une modification de VLAN est configurée par l'administrateur.
- Le client et le serveur ne tiennent compte que des messages VTP dont l'indice de configuration est supérieur à l'indice local.
 - dans ce cas, le switch synchronise sa base de données locale et ajuste l'indice local à l'indice reçu.

Exemple

Sauvegarde

- Le switch server sauvegarde la configuration des VLANs
 - dans un fichier 'vlan.dat' (dans la mémoire flash)
 - dans la 'startup-config' (dans la NVRAM)
 - → le switch server est indépendant
 - → suite à une coupure de courant, il sait retrouver sa configuration de VLANs
- Le switch client ne sauvegarde pas la configuration des VLANs
 - → suite à une coupure de courant, il a besoin de recevoir un message VTP pour créer les VLANs
 - \rightarrow aucun trafic dans les VLANs (autre que le vlan 1)

Problème....

- Tous les switchs doivent avoir la même configuration, sauf un.
- Ce switch différent ne doit pas empêcher la propagation des messages VTP !
- Le mode transparent :
 - il ne tient pas compte des messages
 VTP reçus, mais il les fait suivre sur toutes ses interfaces trunk.
 - il est indépendant : il sauvegarde sa configuration

Bilan VTP

MODE VTP :	Serveur	Client	Transparent
L' administrateur peut y ajouter / modifier / supprimer des VLANS ?	OUI	NON	OUI
Quand l'administrateur y a modifié des VLANs, l'indice de révision incrémente de 1 ?	OUI	non applicable	NON
Le switch tient compte des messages VTP reçus ?	OUI	OUI	NON
Le switch <mark>fait suivre</mark> les messages VTP reçus ?	OUI	OUI	OUI
Le switch sauvegarde la configuration de VLANs dans une mémoire non volatile ?	OUI	NON	OUI

Versions

- VTP existe en 2 versions.
- La version 2 a des fonctionnalités supplémentaires :
 - support pour le Token-ring
 - le switch transparent peut faire suivre les messages VTP d'un autre domaine VTP.
 - l'analyse de cohérence n'est effectuée que lorsqu'un VLAN est modifié via CLI ou SNMP, pas sur réception d'un message VTP
 - exemple : 2 VLANs ne doivent pas avoir le même nom
- Tous les switchs d'un même domaine VTP doivent fonctionner dans la même version VTP.

Mot de passe

• Il est possible de garantir la validité d'un message VTP en y ajoutant une signature MD5.

 Objectif : éviter qu'un switch malveillant supprime les VLANs du réseau en injectant des messages VTP dont l'indice de configuration est supérieur à l'indice courant dans le réseau.

VTP

Configuration

Activer VTP

• Par défaut, VTP n'est pas activé.

• car le nom de domaine VTP est vide :

Sw2#show vtp status

VTP Version	•	2	
Configuration Revision	:	1	
Maximum VLANs supported locally	:	256	
Number of existing VLANs	:	6	
VTP Operating Mode	:	Server	
VTP Domain Name	•		
VTP Pruning Mode	:	Disabled	
VTP V2 Mode	:	Disabled	
VTP Traps Generation	:	Disabled	
MD5 digest 0xF7 0xD7 0xA2 0x44	:	0xDF 0x7D 0xFE 0x3A	
Configuration last modified by	0.0	0.0.0 at 3-1-02 00:0	6:01
Local updater ID is 0.0.0.0			

Activer VTP

Ancienne commande :	Nouvelle commande :			
vlan database	configure terminal			
vtp domain eLearnCisco	vtp domain eLearnCisco			
exit				

Sw2#show vtp status

VTP Version	•	2
Configuration Revision	•	1
Maximum VLANs supported locally	•	256
Number of existing VLANs	:	6
VTP Operating Mode	•	Server
VTP Domain Name	:	eLearnCisco
VTP Pruning Mode	:	Disabled
VTP V2 Mode	:	Disabled

Activer VTP

Un switch ne peut appartenir qu'à un seul domaine VTP à la fois.

• Deux switchs doivent appartenir au même domaine VTP pour qu'ils tiennent compte des messages VTP échangés.

 Rappel : les messages VTP ne sont envoyés que sur les interfaces trunk.

Définir le mode VTP

Ancienne commande :	Nouvelle commande :				
vlan database	configure terminal				
<pre>vtp {server client transparent}</pre>	<pre>vtp mode {server client transparent}</pre>				
exit					

Sw2#show vtp status

VTP Version	:	2
Configuration Revision	:	1
Maximum VLANs supported locally	:	256
Number of existing VLANs	:	6
VTP Operating Mode	:	Client
VTP Domain Name	•	eLearnCisco
VTP Pruning Mode	:	Disabled
VTP V2 Mode	:	Disabled

VTP

Pruning

Sans VTP pruning

- Sw1 reçoit un broadcast pour le Vlan VERT.
- Le broadcast est envoyé sur tous les trunks !
- Mais Sw3 n' a aucun port dans le Vlan VERT
- Le broadcast entre Sw0 et Sw3 aurait pu être évité.

Avec VTP pruning

- Certaines trames ne sont envoyés sur un trunk, que s'il existe en aval un switch intéressé, i.e. avec un port dans le VLAN de la trame :
 - les broadcast
 - les multicast
 - les unicast flooding

Activer VTP pruning

• Par défaut, VTP pruning n'est pas activé.

Sw2#show vtp status		
VTP Version	:	2
Configuration Revision	:	1
Maximum VLANs supported locally	:	256
Number of existing VLANs	:	6
VTP Operating Mode	:	Server
 VTP Domain Name	:	eLearnCisco
VTP Pruning Mode	:	Disabled
VTP V2 Mode	:	Disabled
VTP Traps Generation	:	Disabled
MD5 digest 0xF7 0xD7 0xA2 0x44	:	0xDF 0x7D 0xFE 0x3A
Configuration last modified by ().(0.0.0 at 3-1-02 00:06:01
Local updater ID is 0.0.0.0		
Sw2#		

Activer VTP pruning

Ancienne commande :	Nouvelle commande :			
vlan database	configure terminal			
vtp pruning	vtp pruning			
exit				

Sw2#show vtp status

VTP Version	:	2
Configuration Revision	:	1
Maximum VLANs supported locally	:	256
Number of existing VLANs	:	6
VTP Operating Mode	:	Server
VTP Domain Name	:	eLearnCisco
VTP Pruning Mode	:	Enabled
VTP V2 Mode	:	Disabled

Bilan des commandes VTP

Ancienne commande :	Nouvelle commande :			
vlan database	configure terminal			
vtp domain eLearnCisco	vtp domain eLearnCisco			
vtp server	vtp mode server			
vtp client	vtp mode client			
vtp transparent	vtp mode transparent			
vtp password TOTO	vtp password TOTO			
vtp v2-mode	vtp v2-mode			
vtp pruning	vtp pruning			
exit	exit			

How to enable vlans automatically across multiple switches?

- A. Configure VLAN
- B. Confiture NTP
- C. Configure each VLAN
- D. Configure VTP

Correct Answer: D

Router on the stick

Routage inter-VLAN

Rappel: 2 VLANs

- Deux domaines de broadcast.
 - le switch ne permet aucune communication entre les 2 VLANs.
- Chaque VLAN doit avoir sa propre adresse réseau.

Vue logique des VLANs

• Tout se passe comme s' il y avait plusieurs switchs :

Plan d'adressage des VLANs

- Chaque VLAN a sa propre adresse réseau.
- Exemple :
 - 10.0.0.0 /8
 - 11.0.0.0 /8
 - 12.0.0.0 /8

Vue logique des VLANs

• Tout se passe comme s' il y avait plusieurs switchs :

PROBLEME :

les équipements placés dans différents VLANs ne peuvent plus communiquer ensemble !

SOLUTION : utiliser un ROUTEUR.

Utiliser un routeur

• Le routeur devra avoir une interface dans chaque VLAN :

Utiliser un routeur

• L'adresse IP de chaque interface devra correspondre au plan d'adressage des VLANs :

Utiliser un routeur

 L'adresse IP du routeur doit être la passerelle par défaut des équipements du VLAN :

Domaine de broadcast

 Combien y a-t-il maintenant de domaines de broadcast ?

Domaine de broadcast

• Toujours TROIS !

Optimiser

• 3 VLANs = je consomme 3 interfaces !

Trunk

• Utiliser une seule interface, en trunk !

Trunk

• Quelle adresse IP mettre sur le routeur ?

Trunk

 Configurer les 3 adresses IP sur le routeur à l'aide de sous-interfaces :

Sous-interfaces

 Chaque sous-interface est définie par un numéro choisi arbitrairement : l'interface physique est divisée en plusieurs interfaces logiques.

Sous-interfaces

Chaque sous-interface est associée à un numéro de VLAN

Sous-interfaces

 Chaque sous-interface doit avoir une adresse IP : la passerelle du VLAN.

Option 1: Router with a Separate Interface in Each VLAN

Option 3: Router on a Stick

Le management du switch

Introduction

L'adresse IP d'un switch.

- Est-il obligatoire de mettre une adresse IP sur un switch ?
- Sur quelle interface configurer l'adresse IP ?
- A quoi cette adresse peut-elle servir ?

L'adresse IP d'un switch.

- Elle n' est pas obligatoire.
- Elle sera configurée sur l'interface VLAN 1.
- Elle permet de manager le switch à distance.

Configuration

Exemple de configuration :

configure terminal

interface vlan 1

ip address 10.0.0.1 255.255.255.0

exit

default-gateway 10.0.0.254

Exercice

• Quelle est la passerelle par défaut du PC ?

• Quelle est la passerelle par défaut du switch ?

• Quel chemin empruntera le traffic entre le PC et le switch ?

Solution

 La passerelle par défaut du PC est 10.1.0.254

• La passerelle par défaut du switch est 10.2.0.254.

Solution

 Chemin emprunté par le traffic de management entre le PC et le switch.

Test

Quelle configuration permettra de manager le switch B à distance ?

SwitchB(config)# ip default-gateway 192.168.8.254 SwitchB(config)# interface vlan 1 SwitchB(config-if)# ip address 192.168.8.252 255.255.255.0 SwitchB(config-if)# no shutdown

Test

The network administrator normally establishes a Telnet session with the switch from host A. However, host A is unavailable. The administrator's attempt to telnet to the switch from host B fails, but pings to the other two hosts are successful. What is the issue?

STP

Spanning-Tree Protocol

Et si le switch tombe ...

Redondance

Instabilité de la table des @ MAC

Tempête de broadcast

Duplication des trames

Solution : STP = 802.1d

• le plus rapidement possible

Méthodologie du STP

- 1. Déterminer le switch racine du réseau
- 2. Déterminer un port racine pour chaque switch (sauf le switch racine)
- 3. Déterminer un port désigné pour chaque segment
- 4. Bloquer les ports non-désignés

Exemple 1

Le BRIDGE-ID

• Bridge-ID = (Bridge PRIORITY ; MAC @)

- Bridge PRIORITY :
 - entre 0 et 65535
 - par défaut 32768

Règle de l'étape 1

1. Déterminer le switch racine du réseau

- 2. Déterminer un port racine pour chaque <u>switch</u> (sauf le sw racine)
- 3. Déterminer un port désigné pour chaque <u>segment</u>
- 4. Déterminer les ports non-désignés
- Le switch racine est le switch dont le BRIDGE ID est le plus PETIT.

Solution 1 (32768 ; aaaa.0000.0000) (32768; cccc.0000.0000) SW2 **SW1** SW3 (4096; bbbb.0000.0000)

Test

• Qui sera élu switch racine ?

Test

- Qui sera élu switch racine ?
 - A. 32768: 11-22-33-44-55-66
 - B. 32768: 22-33-44-55-66-77
 - C. 32769:11-22-33-44-55-65
 - D. 32769: 22-33-44-55-66-78

Pourquoi ce switch n' a pas été élu switch racine ?

Spanning t Root ID	ree enabled Priority Address	abled protocol rstp ity 20481 ss 0008.217a.5800				
	Cost	38	4.0000			
	Port	1 (FastE	thernet0/1)			
	Hello Time	2 sec	Max Age 20 s	ec Forward	Delay 15 sec	
Bridge ID	Priority Address Hello Time Aging Time	32769 (0008.205 2 sec 300	priority 327 e.6600 Max Age 20 s	68 sys-id-ex sec Forward	ct 1) Delay 15 sec	
Interface	Role St	s Cost	Prio.Nbr	Туре		
Interface Fa0/1	Role St Root FW	s Cost D 19	Prio.Nbr 128.1	Туре Р2р		
Interface Fa0/1 Fa0/4	Role St Root FW Desg FW	s Cost D 19 D 38	Prio.Mbr 128.1 128.1	Type P2p P2p		
Interface Fa0/1 Fa0/4 Fa0/11	Role St Root FW Desg FW Alth BL	s Cost D 19 D 38 K 57	Prio.Nbr 128.1 128.1 128.1 128.1	Type P2p P2p P2p P2p		

Règle de l'étape 2

- 1. Déterminer le switch racine du réseau
- 2. Déterminer un port racine pour chaque switch (sauf le sw racine)
- 3. Déterminer un port désigné pour chaque <u>segment</u>
- 4. Déterminer les ports non-désignés
- Le port racine est le port qui me mène le plus vite à la racine.
- C'est-à-dire dont le coût pour atteindre le Root est le moins élevé

Coût de chaque liaison

- STP attribue un coût à chaque liaison
- Ce coût dépend de la Bande passante

Bande passante	Coût
10 Mb/s	100
100 Mb/s	19
1 Gb/s	4
10 Gb/s	2
100 Gb/s	1

Root Path Cost

• Somme des coûts entre moi et le switch racine.

100 Gb/s

1

FORMATION CCNA 2018

v3-3.0 439

Exercice 1

Solution

Exercice 2

Solution

BPDU

- Bridge Protocol Data Unit
- Générés par le switch racine
- Envoyé toutes les 2 secondes
- Sur toutes les interfaces
- 4 champs nous intéressent :
 - BRIDGE-ID du switch racine
 - BRIDGE-ID du switch local
 - ROOT PATH COST
 - PORT-ID

BPDU envoyés par SW1

BPDU envoyés par SW2

BPDU envoyés par SW3

Règle de l'étape 3

- 1. Déterminer le switch racine du réseau
- 2. Déterminer un port racine pour chaque <u>switch</u> (sauf le sw racine)
- 3. Déterminer un port désigné pour chaque <u>segment</u>
- 4. Déterminer les ports non-désignés
- Le port désigné est le port du Segment qui conduit le plus vite au Root
- C'est celui pour lequel le coût est le moins élevé

Port DSG sur segment 1-2

Port DSG sur segment 1-2

TOUS les ports du switch RACINE sont des ports DESIGNES

FORMATION CCNA 2018

v3-3.0 452

Port DSG sur segment 2-3

Le meilleur BPDU

- Celui dont le champ ROOT PATH COST est le plus petit.
- Si égalité :
 - Celui dont le champ MY BRIDGE-ID est le plus petit.

Port DSG sur segment 2-3

Règle de l'étape 4

- 1. Déterminer le switch racine du réseau
- 2. Déterminer un port racine pour chaque <u>switch</u> (sauf le sw racine)
- 3. Déterminer un port désigné pour chaque <u>segment</u>
- 4. Déterminer les ports non-désignés
- Les ports non-désignés sont les ports qui ne sont ni RACINE ni DESIGNE

Port non désigné

Solution 1

Solution 2

Solution partielle 3

Le PORT-ID

Port-ID = (Port PRIORITY ; n° de port [K])

- Port PRIORITY :
 - entre 1 et 256
 - par défaut 128

Le meilleur BPDU

- Celui dont le champ ROOT PATH COST est le plus petit.
- Si égalité :
 - Celui dont le champ MY BRIDGE-ID est le plus petit.
 - Si égalité :
 - Celui dont le champ PORT-ID est le plus petit

Quels Port-ID sont envoyés ?

Etats d'un port

Racine	FORWARDING
 Désigné 	FORWARDING
 Non désigné 	BLOCKING

© www.ccna-lab.com 2011

468

FORMATION CCNA 2018

v3-3.0 468
Passage en Forwarding

- N' est pas immédiat
- 15 secondes en LISTENING
 - pour valider que la décision prise est bien la bonne
- 15 secondes en LEARNING
 - pour enrichir la table des mac @
- puis passage en forwarding

© www.ccna-lab.com 2011

469

FORMATION CCNA 2018

v3-3.0 469

Timers STP

HELLO fréquence à laquelle les BPDU sont

- générés par la racine
- FORWARD-DELAY

15 sec

- temps d'attente dans les états listening et learning
- MAX-AGE

20 sec

• durée de vie d'un BPDU

© www.ccna-lab.com 2011

470

A quoi sert le 'max-age' ?

© www.ccna-lab.com 2011

FORMATION CCNA 2018

471

v3-3.0 471

A quoi sert le 'max-age' ?

'Max-age' permet de détecter la perte du lien.

© www.ccna-lab.com 2011

FORMATION CCNA 2018

472

v3-3.0 472

Vérifier STP sur le switch racine

```
Root Switch#show spanning-tree vlan 1
VT.AN1
 Spanning tree enabled protocol ieee
 Root ID Priority 32768
           Address cc00.0000.0000
           This bridge is the root
           Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32768
           Address cc00.0000.0000
           Hello Time 2 sec Max Age 20 sec
Forward Delay 15 sec
           Aging Time 300
Interface
                                      Designated
               Port ID Prio Cost Sts Cost Bridge ID Port ID
Name
      _____
FastEthernet0/1 128.2 128 19 FWD 0 32768 cc00.0000.0000 128.2
FastEthernet0/10 128.11 128 19 FWD 0 32768 cc00.0000.0000 128.11
```

Vérifier STP sur le switch non-racine

Non Root Switch#show spanning-tree vlan 1 VT.AN1 Spanning tree enabled protocol ieee Root ID Priority 32768 Address cc00.000c.0000 Cost 19 Port 11 (FastEthernet0/10) Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 32768 Address cc03.0a4c.0000Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Aging Time 300 Interface Designated Port ID Prio Cost Sts Cost Bridge ID Port ID Name _____ _ ____ ____ ____ ___ ___ ____ FastEthernet0/0 128.1 128 19 FWD 19 32768 cc03.0a4c.0000 128.1 FastEthernet0/1 128.2 128 19 BLK 19 32768 cc01.0a4c.0000 128.12

FastEthernet0/10 128.11 128 19 FWD 0 32768 cc00.000c.0000 128.11

15 secondes Statut LIS

Non Root Switch#sh spanning-tree vlan 1 VT.AN1 Spanning tree enabled protocol ieee Root ID Priority 32768 Address cc00.000c.0000 Cost 19 Port 11 (FastEthernet0/10) Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 32768 Address cc03.0a4c.0000 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Aging Time 300 Interface Designated Port ID Prio Cost **Sts** Cost Bridge ID Port ID Name FastEthernet0/0 128.1 128 19 LIS 19 32768 cc03.0a4c.0000 128.1 FastEthernet0/1 128.2 128 19 BLK 19 32768 cc01.0a4c.0000 128.12 FastEthernet0/10 128.11 128 19 LIS 0 32768 cc00.000c.0000 128.11

15 secondes Statut LRN

Non Root Switch#sh spanning-tree vlan 1 VT.AN1 Spanning tree enabled protocol ieee Root ID Priority 32768 Address cc00.000c.0000 Cost 19 Port 11 (FastEthernet0/10) Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 32768 Address cc03.0a4c.0000 Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Aging Time 300 Interface Designated Port ID Prio Cost **Sts** Cost Bridge ID Port ID Name FastEthernet0/0 128.1 128 19 LRN 19 32768 cc03.0a4c.0000 128.1 FastEthernet0/1 128.2 128 19 BLK 19 32768 cc01.0a4c.0000 128.12 FastEthernet0/10 128.11 128 19 LRN 0 32768 cc00.000c.0000 128.11

Quelle affirmation est correcte ?

SwitchA# show spanning-tree vlan 20

VLAN 0020						
Spanning t	ree enabled	protocol rst	tp			
Root ID	Priority	24596				
	Address	0017.596d.2a00				
	Cost	38				
	Port	11 (FastEthernet0/10)				
	Hello Time	2 sec Max	x Age 20 s	sec Forward Delay 15 sec		
Bridge ID	Priority Address	28692 (pr. 0017.596d.	iority 280 1580	672 sys-id-ext 1)		
	Hello Time Aging Time	2 sec Max 300	Age 20 se	ec Forward Delay 15 sec		
Interface	Role St:	s Cost	Prio.Nbr	Туре		
			100.11			
Fa0/11	ROOT FW	0 19	128.11	P2p		
Fa0/12	Altn BL	K 19	128.12	P2p		

- A. The Fa0/11 role confirms that SwitchA is the root bridge for VLAN 20.
- B. VLAN 20 is running the Per VLAN Spanning Tree Protocol.
- C. The MAC address of the root bridge is 0017.596d.1580.
- D. SwitchA is not the root bridge, because not all of the interface roles are designated.

Port fast

- Pour passer immédiatement en FORWARDING.
- Certain qu'il n'y a pas de risque de boucle
- Exemple :
 - port connecté à un PC
 - port connecté à un serveur

Configurer Port Fast et activer Bpduguard

• conf t

- interface fa0/0
 - spanning-tree portfast
 - spanning-tree bpduguard enable
 - Désactive le lien sur réception d'un BPDU
 - Commande associée en général à la précdente
 - Le port passe en état « errdisabled »

Lenteur de 802.1d

- 50 secondes pour réagir :
 - 20 secondes de Max Age
 - 15 secondes en Listening
 - 15 secondes en Learning

Rapid STP = 802.1w

- conf t
- spanning-tree mode rapid-pvst

- Compatible avec STP.
- Les BPDU sont générés par chaque switch (et pas seulement par le switch racine).
 - Je n'attends plus 20 secondes pour réagir.
 - Je réagis dès que 3 BPDU ne sont pas arrivés

Rôles d'un port

- Racine
- Désigné
- Non désigné :
 - Alternate

X

 n' est pas sur le même switch que le port qui envoie le meilleur BPDU du segment

Back-up

est sur le même switch que le port qui envoie le meilleur BPDU du segment

© www.ccna-lab.com 2011

482

FORMATION CCNA 2018

v3-3.0 484

RSTP: 3 types des ports

- « Point-to-Point »
 - Switch en full duplex
 - Convergence plus rapide avec RSTP
- « Shared »
 - Hub (half duplex)
- « Edge »

Connecté à un host

Configuré via PortFast

PVST+

- Per VLAN Spanning-Tree
- Un arbre de recouvrement pour CHAQUE vlan.
- Compatible avec Rapid-STP.

PVST

- Per VLAN Spanning-Tree
- Un arbre de recouvrement pour CHAQUE vlan

Batiment avec 3 étages

1 STP pour tous les VLANS

TOUT le trafic passe par ici...

PVSTP : trafic du VLAN 100

PVSTP : trafic du VLAN 200

Positionner le sw racine

- Diminuer sa priorité.
- Par défaut, Bridge PRIORITY = 32768
- Pour diminuer :
 - conf t
 - spanning-tree vlan 100 priority 8192
 - obligatoirement un multiple de 4096

Le CHAMP bridge priority

• le BRIDGE PRIORITY = 4 bits

• le n° du VLAN = 12 bits

Configuration PVSTP

spanning-tree vlan 100 priority **4096** spanning-tree vlan 200 priority 8192 spanning-tree vlan 100 priority 8192 spanning-tree vlan 200 priority 4096

Macro

- spanning-tree vlan 100 root primary
 - IOS s'arrange pour prendre une priorité plus basse que toutes celles annoncées sur le réseau
- spanning-tree vlan 100 root secondary

Et si 50 vlans...

MSTP = Multiple STP = 802.1s

Types of Spanning-Tree Protocols

Spanning-tree standards:

- IEEE 802.1D: The legacy standard for bridging and STP
 - CST: Assumes one spanning-tree instance for the entire bridged network, regardless of the number of VLANs
- PVST+: A Cisco enhancement of STP that provides a separate 802.1D spanning-tree instance for each VLAN that is configured in the network
- 802.1s (MSTP): Maps multiple VLANs into the same spanning-tree instance
- 802.1w (RSTP): Improves convergence over 1998 STP by adding roles to ports and enhancing BPDU exchanges
- Rapid PVST+: A Cisco enhancement of RSTP using PVST+

Comparison of Spanning-Tree Protocols

Protocol	Standard	Resources Needed	Convergence	Number of Trees
STP	802.1D	Low	Slow	One
PVST+	Cisco	High	Slow	One for every VLAN
RSTP	802.1w	Medium	Fast	One
Rapid PVST+	Cisco	Very high	Fast	One for every VLAN
MSTP	802.1s Cisco	Medium or high	Fast	One for multiple VLANs

Glossaire

Standard	Date	Description
802.3	1983	CSMA/CD Ethernet
802.3ad	2000	Aggrégation de liens LACP
<u>802.1D</u>	1998, 2004	Spanning Tree Protocol STP
<u>802.1Q</u>	1998, 2003, 2005 2011 2014	Virtual LANs
<u>802.1s</u>	mutualisé avec 802.1Q-2003	Multiple Spanning Trees
<u>802.1w</u>	mutualisé avec 802.1D-2004	Rapid Spanning Tree
802.1x	2001	Port Based Network Access
802.1ab	2005	LLDP

Test

Which spanning-tree protocol rides on top of another spanning-tree protocol?

- A. MSTP
- B. RSTP
- C. PVST+
- D. Mono Spanning Tree

Correct Answer: A
Etherchannel

Aggrégation de liens

EtherChannel

- Aggrégation logique de liaisons similaires
- Partage de charge
- •Considéré comme un seul port logique
- Redondance
- Jusque 8 liens simultannés

Protocoles de négociation dynamique

PAgP • Propriétaire Cisco LACP • Standard IEEE 802.3ad PAgP or LACP

Terminologie de négociation

Recommandations sur les EtherChannels

- Toutes les interfaces physiques d'un Etherchannel doivent être configurée avec la même vitesse et la même mode duplex.
- Toutes les interfaces physiques d'un Etherchannel doivent :
 - soit être rattachées au même VLAN,
 - soit fonctionner en **mode Trunk**.
- Si les interfaces physiques d'un Etherchannel sont en mode Trunk, alors elles doivent toutes autoriser **la même liste de VLANs**.

Recommandations sur les EtherChannels

- Les interfaces physiques d'un Etherchannel peuvent avoir des coûts STP différents.
- Toute modification de la configuration de l'interface logique impacte l'Etherchannel et donc les interfaces physiques
- Une modification de la configuration d'une interface physique n'impacte pas l'interface logique.

Recommandations sur les EtherChannels

interface FastEthernet0/9 description DSW121 0/9-10 - DSW122 0/9 switchport trunk encapsulation dot1q switchport trunk allowed vlan 1,21-28 switchport mode trunk

channel-group 2 mode desirable

interface FastEthernet0/10 description DSW121 0/9-10 - DSW122 0/9 switchport trunk encapsulation dot1q switchport trunk allowed vlan 1,21-28 switchport mode trunk

channel-group 2 mode desirable

Switch Stacking

- StackWise provides a method to join multiple physical switches into a single logical switching unit.
- Switches are united by special interconnect cables.
- The master switch is elected.
- The stack is managed as a single object and has a single management IP address.

Switch Stacking (Cont.)

Typical switch topology:

- Management overhead.
- STP blocks half of the uplinks.
- No direct communication between access switches.

Topology using StackWise:

- Multiple access switches in the same rack.
- Reduced management overhead.
- Stack interconnect.
- Multiple switches can create an EtherChannel connection.

Configurer la haute disponibilité dans un réseau d'entreprise

Configurer la redondance de la passerelle par défaut avec HSRP

Indisponibilité de la passerelle par défaut

First Hop Redundancy Protocol

Understanding FHRP

Cisco HSRP (Hot Standby Routing Protocol)

Un ensemble de routeurs, en secours d'un routeur actif, est appelé groupe HSRP

Le routeur Actif

Le routeur actif répond aux requêtes ARP avec l'adresse MAC virtuelle du routeur virtuel

Adresse MAC virtuelle

Le routeur Standby écoute les hellos périodiques sur 224.0.0.2.

Si le routeur actif n'entend plus le Stanby

Les commandes de configuration

show standby

	v Sldi	naby i	oriel			
			P indica	tes configured t	o preempt.	
				-		
Interface	Grp	Prio	P State	Active addr	Standby addr	Group addr
V111	10	110	Active	local	172.16.10.169	172.16.10.110

Configuration des priorités HSRP

- La priorité par défaut est 100
- En cas d'égalité, c'est le routeur avec la plus grande adresse IP qui devient actif.

Configuration HSRP de la préemption

La préemption permet au routeur actif de reprendre la main lorsqu'il reprend du service

Configuration des Timers

Le Holdtime doit être supérieur à 3 fois le Hello

Supervision du lien

Un lien tombe et le trafic bascule

Configuration de la supervision

Switch(config-if)#standby [group-number] track type number
[interface-priority]

Configuration de la supervision

Switch(config)#interface vlan 10
Switch(config-if)#standby 1 track GigabitEthernet 0/7 50
Switch(config-if)#standby 1 track GigabitEthernet 0/8 60

• Example de configuration

Note: la préemption doit être configurée sur tous les membres d'un groupe

IP v6

L'adresse IPv6

Rappel sur IPv4:

- Longueur : 4 octets
- Exprimée en : Décimal
- Exemple : 192.168.10.1
- Masque : 4 octets, en décimal, 255.255.255.0

<u>IPv6 :</u>

- Longueur : 16 octets
- Exprimée en : Hexadécimal
- Exemple : 1111:2222:3333:4444:5555:6666:7777:FFFF
- Masque : 16 octets, exprimé en /X, exemple : /64
- Plusieurs adresses IPv6 sur une même interface

Règles de simplification

• Toute suite de 0000 peut être remplacée par ::

• :0000:	•	•
• :0000:0000:	•	•
• :0000:0000:0000	•	•

- Ce remplacement ne peut être effectué qu'une seule fois.
- Les 0 en début de section peuvent être supprimés.

• :0001:	:1:
• :0123:	:123:

• Les 0 en fin de section ne peuvent pas être supprimés.

• :1000:	:1000:

• :1100: :1100:

Simplifier une adresse

Adresse initiale	0011 :	2020 :	0000:	0000:	00 aa:	0000:	3330:	2000
OK	0011:	2020 :			00aa:	0000:	3330:	2000
OK	0011:	2020:	0000:	0000:	00aa <mark>:</mark>	0 0	3330:	2000
KO	0011:	2020 :		:	00aa <mark>:</mark>		3330:	2000
OK	11:	2020:	0000:	0000:	aa:	0000:	3330:	2000
KO	0011:	202 :	0000:	0000:	00aa:	0000:	333 :	2
Adresse finale	11:	2020:			aa:	0:	3330:	2000

Catégories de paquets

Rappel sur IPv4:

- Unicast
- Multicast
 - •classe D : 224.0.0.0 à 239.255.255.255
- Broadcast
- <u>IPv6 :</u>
- Unicast
- Multicast
 - •FF00::/8
- Anycast
 - •« One-to-nearest »

Exemples multicast IPv6

Adresse IPv4	Adresse IPv6	Signification
224.0.0.1	FF02::1	Tous les hosts
224.0.0.2	FF02::2	Tous les routeurs
224.0.0.5 et 6	FF02::5 et 6	Tous les routeurs OSPF
224.0.0.9	FF02::9	Tous les routeurs RIP
224.0.0.10	FF02::A	Tous les routeurs EIGRP

Anycast

- La même adresse IPv6 configurée sur 2 équipements distincts.
- Modèle de communication « one-to-nearest ».

Plages réservées

Rappel sur IPv4:

- Privées = site local:
 - Classe A : 10.0.0/8
 - Classe B : 172.16.0.0. à 172.31.0.0 / 16
 - Classe C : 192.168.0.0 à 192.168.255.0 /24
- Publiques
- 127.0.0.1 = adresse de loopback

<u>IPv6 :</u>

- Privées :
 - Link local = FE80::/10
 - Unique Local Address = FC::0/7
- Publiques = uniques globalement :
 - 2000::/3 =001x xxxx xxxx xxxx ::
- ::1 = adresse de loopback
- :: = adresse non spécifiée (par exemple source de paquet DHCPv6)

IPv6 Unicast Addresses

Address	Value	Description
Global	2000::/3	Assigned by the IANA and used on public networks. They are equivalent to IPv4 global (public) addresses. ISPs summarize these to provide scalability on the Internet.
Unique- Local	FC00::/7	Unique local unicast addresses are analogous to private IPv4 addresses in that they are used for local communications. The scope is entire site or organization.
Link-local	FE80::/10— FEB0::/10	An automatically configured IPv6 address on an interface, the scope is only on the physical link. The first two digits are FE, and the third digit can range from 8 to B.
Reserved	(range)	Used for specific types of anycast and also for future use. Currently, about 1/256 of the IPv6 address space is reserved.
Loopback	::1	Like the 127.0.0.1 address in IPv4, 0:0:0:0:0:0:0:0:1, or ::1, is used for local testing functions. Unlike IPv4, which dedicates a complete A class block of addresses for local testing, IPv6 uses only one.
Unspecified		0.0.0.0 in IPv4 means "unknown" address. In IPv6, this address is represented by 0:0:0:0:0:0:0:0, or ::, and is typically used in the source address field of the packet when an interface doesn't have an address and is trying to acquire one dynamically.
		FORMATION CCNA 2018 v3-3.0 537

Le format EUI-64

Exemple EUI-64

Avec une Mac address 1111.2222.3333 : 1111.22 est l'OUI = Organizational Unique Identifier 22.3333 est le numéro de série

Adresse réseau	2001					
Adresse MAC			1111:	22	22:	3333
Adresse eui-64			1311:	22FF:	FE22:	3333
Adresse réseau	2001		1311:	22FF:	FE22:	3333

- int fa0/0
- ipv6 address 2001:: /64 eui-64
- show ipv6 address
 - 2001::1311:22FF:FE22:3333/64

Exemple de configuration

LAN: 2001:DB8:C18:1::/64

FORMATION CCNA 2018
Solicited Node Multicast Address

- A chaque adresse unicast correspond une adresse dite SNMA.
- L'équipement doit joindre les groupes multicast correspondant à chacune de ses SNMA

« écouter ces paquets »
 IPv6 Address

Exemple SNMA

542

Neighbor Discovery

Neighbor discovery performs the same functions in IPv6 as ARP does in IPv4.

Corrélation couches 2 et 3

• IPv4:

•ARP, Adress Resolution Protocol

- IPv6:
 - •NDP, Neighbor Discovery Protocol
 - deux paquets ICMPv6:
 - NS, Neighbor Sollicitation = paquet ICMPv6 type 135
 - » multicast vers Solicited Node Multicast Address
 - NA, Neighbor Advertisement = paquet ICMPv6 type 136
 - » unicast
 - mécanisme DAD, Duplicate Address Detection

Exemple NS & NA

Duplicate Address Detection

ICMP Type 135

Source = ::

Destination = Solicited-Node Multicast Address of A

Data = Link Layer Address of A

Query = What Is Your Link Address?

FORMATION CCNA 2018

546

Stateless auto-configuration

547

Stateless Autoconfiguration

The router advertisement packet:

- ICMP type: 134
- Source: Router link-local address
- Destination: FF02::1 (allnodes multicast address)
- Data: Options, prefix, lifetime, autoconfiguration flag

Stateless Autoconfiguration (Cont.)

The router solicitation packet:

- ICMP type: 133
- Source: Unspecified address (::)
- Destination: FF02::2 (allrouters multicast address)

NDP RS & RA

• NDP, Neighbor Discovery Protocol

- deux paquets ICMPv6:
 - RS, Router Sollicitation = paquet ICMPv6 type 133
 - multicast vers FF02::2
 - demande aux routeurs d'envoyer un RA
 - ne peut être envoyé que 3 fois, au boot
 - **RA, Router Advertisement** = paquet ICMPv6 type 134
 - multicast vers FF02::1 (unicast si en réponse à un RS)
 - Prefix information = les sous-réseaux disponibles sur le lien
 - Gateway

550

v3-3.0

550

Exemple RA

- ICMPv6 type 134
 - Adresse source = Link-local du routeur
 - Adresse destination = FF02::1 (tous les nœuds)
 - Data = Prefix, gateway, lifetime, flags

Exemple RS

- ICMPv6 type 133
 - Adresse source = ::
 - Adresse destination = FF02::2 (tous les routeurs)

Bilan des méthodes de config

link- local	statique		ipv6 address FE80::1 link-local
	eui 64		[automatique]
	statique		ipv6 address 2001:abcd::1/64 ipv6 unnumbered Loopback0
routable	eui 64		ipv6 address 2001:abcd::/64 eui-64
	dyna-	auto- config	ipv6 address autoconfig
	mique	DHCPv6	ipv6 address dhcp

FORMATION CCNA 2018

Entête IPv6

Simplifié

• moitié des champs IPv4 supprimés

- consomme moins de ressources pour processer
- amélioré les performances et l'efficacité du routage
- Aligné sur 64 bits (IPv4 sur 32 bits)
 meilleur processing en hardware
- Plus de Checksum:
 - le routage n'a plus besoin de recalculer
 - détection d'erreur au niveaux 2 et 4

551

Subnetting Seconde partie

Le subnetting :

- 1. L'adresse IP et son masque
- 2. Les adresses réservées

3. Les classes

- 4. Le nombre d'adresses par réseau
- 5. Le subnetting sur un octet entier
- 6. Le subnetting sur un octet partiel

Définition des 5 classes d'adresses IP

Classe	Définition en binaire			
A	0xxxxxxx	XXXXXXXX	XXXXXXXX	XXXXXXXX
В	10xxxxxx	XXXXXXXX	XXXXXXXX	XXXXXXXX
С	110xxxxx	XXXXXXXX	XXXXXXXX	XXXXXXXX
D	1110xxxx	XXXXXXXX	XXXXXXXX	XXXXXXXX
E	1111xxxx	XXXXXXXX	XXXXXXXX	XXXXXXXX

Définition des 5 classes d'adresses IP

Classe	Définition en décimal			
A	0 à 127	XXXXXXXX	xxxxxxx	XXXXXXXX
В	128 à 191	XXXXXXXX	xxxxxxx	XXXXXXXX
С	192 à 223	XXXXXXXX	xxxxxxx	XXXXXXXX
D	224 à 239	XXXXXXXX	xxxxxxxx	XXXXXXXX
E	240 à 255	XXXXXXXX	XXXXXXXX	XXXXXXXX

Explications

classe	128	64	32	16	8	4	2	1		décimal
А	0	0	0	0	0	0	0	1	=	1
А	0	0	1	1	1	1	1	1	=	63
A	0	1	1	1	1	1	1	1		127
В	1	0	0	0	0	0	0	0	=	128
В	1	0	0	0	0	0	0	1	=	129
В	1	0	1	1	1	1	1	0	=	190
В	1	0	1	1	1	1	1	1		191
С	1	1	0	0	0	0	0	0	=	192
С	1	1	0	0	0	0	0	1	I	193
С	1	1	0	1	1	1	1	1		223
D	1	1	1	0	0	0	0	0	=	224
D	1	1	1	0	1	1	1	1	=	239

Masque des 5 classes

Classe	Masque			
A	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX
В	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX
С	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX
D	XXXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXXX
E	XXXXXXXX	XXXXXXXX	XXXXXXXX	xxxxxxx

Masque des 3 classes

Classe	Ma	asque
A	/8	255.0.0.0
В	/16	255.255.0.0
С	/24	255.255.255.0
D	Multicast	
E	Recherche	

Adresses privées de chaque classe

А	10 .0.00
B	172.16.0.0 à 172.31.0.0
С	192.168.0.0 à 192.168.255.0

Le subnetting :

- 1. L'adresse IP et son masque
- 2. Les adresses réservées

3. Les classes

4. Le nombre d'adresses par réseau

- 5. Le subnetting sur un octet entier
- 6. Le subnetting sur un octet partiel

Pour les réseaux de Classe C

• Regardons la longueur du masque :

- Masque : 255.255.255.0 i.e. /24
- Nombre de bits pour la partie hôte = 8
- Exemple : 200.10.20.0
 Adresse réseau : 200.10.20.0
 Première adresse disponible : 200.10.20.1
 Dernière adresse disponible : 200.10.20.254
 Adresse broadcast : 200.10.20.255
 Nombre d' adresses disponibles : 254
 - $254 = 256 2 = 2^8 2$

La Classe B

• Regardons la longueur du masque : • Masque : 255.255.0.0 /16 i.e. • Nombre de bits pour la partie hôte = 16 • Exemple : 151.1.0.0 Adresse réseau : 151.1.0.0 • Première adresse disponible : 151.1.0.1 • Dernière adresse disponible : 151.1.255.254 Adresse broadcast : 151.1.255.255 Nombre d'adresses disponibles : 65 534

• $(256 \times 256) - 2 = 65 534 = 2^{16} - 2$

La Classe A

• Propriétés :

• Masque : 255.0.0.0 i.e. /8

• Nombre de bits pour la partie hôte = 24

- Exemple : 5.0.0.0
 Adresse réseau : 5.0.0.0
 - Première adresse disponible : 5.0.0.1
 - Dernière adresse disponible : 5.255.255.254
 - Adresse broadcast : 5.255.255.255
 - Nombre d'adresses disponibles : 16 777 216

• $(256 \times 256 \times 256) - 2 = 2^{24} - 2$

Exercice

Adresse	Classe	Adresse réseau	1 ^{ère} adresse disponible	Dernière adresse disponible	Adresse broadcast
2.2.2.2					
200.2.2.2					
222.2.2.2					
182.2.2.2					
191.1.1.1					

Solution

Adresse	Classe	Adresse réseau	1 ^{ère} adresse disponible	Dernière adresse disponible	Adresse broadcast
2.2.2.2	A	2 .0.0.0	2 .0.0.1	2 .255.255.254	2 .255.255.255
200.2.2.2	С	200.2.2.0	200.2.2.1	200.2.2.254	200.2.2.255
222.2.2.2	С	222.2.2.0	222.2.2.1	222.2.2.254	222.2.2.255
182.2.2.2	В	182.2.0.0	182.2.0.1	182.2.255.254	182.2.255.255
191.1.1.1	В	191.1.0.0	191.1.0.1	191.1.255.254	191.1.255.255

Tableau récapitulatif

Masque	Nombre de bits dans la partie réseau	Nombre de bits dans la partie hôte	Nombre de combinaisons possibles	Nombre d' @ interdites	Nombres d' @ disponibles
/8	8	24	2 ²⁴	2	2 ²⁴ - 2
/16	16	16	2 ¹⁶	2	2 ¹⁶ -2
/24	24	8	2 ⁸	2	2 ⁸ -2

Identifier avec la « Largeur de bloc »

	Masque	Largeur du bloc	Nombre d'hôtes
/24	255.255.255.0	2 ⁸ =256	254
/16	255.255.0.0	2 ¹⁶ =65 536	65 534
/8	255.0.0.0	2 ²⁴ =16 777 218	16 777 216

Le subnetting :

- 1. L'adresse IP et son masque
- 2. Les adresses réservées
- 3. Les classes
- 4. Le nombre d'adresses par réseau

- 5. Le subnetting sur un octet entier
- 6. Le subnetting sur un octet partiel

Les broadcast sans sous-réseau

- Avec le masque de la classe /16 :
 - Les broadcast sont diffusés sur tout le réseau 172.16.0.0/16.
 - Ils innondent le réseau.

FORMATION CCNA 2018

v3-3.0 572

Les broadcast avec sous-réseau

- Avec un masque de sous-réseau en /24 :
 - Les broadcast sont confinés dans chaque sous-réseau.

Créer un sous-réseau

• Pour créer un sous-réseau :

•on allonge la taille du masque initial

- Exemple :
 - masque initial : /16
 - masque final : /24
- En binaire :
 - masque initial :
 - masque final :

 11111111.1111111.0000000.0000000

 1111111.1111111.111111.00000000

Le sous-réseau

• Avec le masque initial :

/16

• Avec un masque allongé (plusieurs possibilités selon X) :

/24

Avec le masque initial en /16

172.16.0.0	Adresse réseau
172.16.0.1	1 ^{ère} adresse disponible
172.16.0.2	2 ^{ème} adresse disponible
172.16.0.3	3 ^{ème} adresse disponible
172.16.0	etc
172.16.255.254	Dernière adresse disponible
172.16.255.255	Adresse de broadcast
Avec un masque rallongé en /24

172.16. <mark>0</mark> .0	Adresse réseau	
172.16. <mark>0.1</mark>	1 ^{ère} adresse disponible	1er
172.16. <mark>0.2</mark>	2 ^{ème} adresse disponible	cous-récoau
172.16. <mark>0</mark>	etc	3003-1636au
172.16.0.254	Dernière adresse disponible	
172.16.0.255	Adresse de broadcast	
172.16. 1 .0	Adresse réseau	
172.16. <mark>1</mark> .1	1 ^{ère} adresse disponible	2ème
172.16.1.2	2 ^{ème} adresse disponible	couc₋rócoau
172.16. 1	etc	3003-1636au
172.16.1.254	Dernière adresse disponible	
172.16.1.255	Adresse de broadcast	
172.16. <mark>2</mark> .0	Adresse réseau	
172.16. <mark>2</mark> .1	1 ^{ère} adresse disponible	3ème
172.16.2.2	2 ^{ème} adresse disponible	couc_récoau
172.16. <mark>2</mark>	etc	3003-153CaU
172.16.2.254	Dernière adresse disponible	
172.16.2.255	Adresse de broadcast	

Combien de sous-réseaux créés ?

172.16. <mark>0</mark> .0	Adresse <mark>réseau</mark>	1 ^{er} sous-réseau
172.16. <mark>1</mark> .0	Adresse réseau	2 ^{ème} sous-réseau
172.16. <mark>2</mark> .0	Adresse <mark>réseau</mark>	3 ^{ème} sous-réseau
172.16. <mark>3</mark> .0	Adresse <mark>réseau</mark>	4 ^{ème} sous-réseau
172.16. <mark>4</mark> .0	Adresse <mark>réseau</mark>	5 ^{ème} sous-réseau
172.16. <mark>5</mark> .0	Adresse réseau	6 ^{ème} sous-réseau
172.16. <mark>254</mark> .0	Adresse réseau	255 ^{ème} sous-réseau
172.16. 255 .0	Adresse <mark>réseau</mark>	256 ^{ème} sous-réseau

Conclusion

- Lorsqu'on rallonge le masque de 8 bits :
- Exemple :
 - de /16 = 111111111111111100000000.00000000

• à /24 = 11111111111111111111111100000000

Nombre de sous-réseaux créés : 256 = 2⁸

• C'est le nombre de combinaisons possibles pour le 3^{ème} octet

Le subnetting :

- 1. L'adresse IP et son masque
- 2. Les adresses réservées
- 3. Les classes
- 4. Le nombre d'adresses par réseau
- 5. Le subnetting sur un octet entier
- 6. Le subnetting sur un octet partiel

Subnetting sur octet entier ou partiel ?

- Sur un octet entier :
 - rallonger le masque de 8 ou 16 bits
 - par exemple :
 - de /16 = 1111111111111111100000000.00000000
 - à /24 = 11111111111111111111111100000000
- Sur un octet **partiel** :
 - rallonger le masque de 1, 2, ... 5 ... X bits
 - par exemple :
 - de /16 = 111111111111111100000000.00000000
 - à /20 = 111111111111111111110000.0000000

Rallonger de 1 bit

- Lorsqu'on rallonge le masque de 1 bit :
- Exemple :
 - de /24 = 1111111111111111111111111100000000

Nombre de sous-réseaux créés : 2¹ = 2

Rallonger de 2 bits

- Lorsqu'on rallonge le masque de 2 bits :
- Exemple :
 - de /24 = 1111111111111111111111111100000000

Nombre de sous-réseaux créés : 2² = 4

Rallonger de N bits

- Lorsqu'on rallonge le masque de N bits :
- Exemple :
 - de /24 = 111111111111111111111111100000000
- Nombre de sous-réseaux créés : 2^N

Comment écrire le masque en décimal ?

• Exemple :

Rappel de conversion d'octet

128	64	32	16	8	4	2	1		en décimal
1	0	0	0	0	0	0	0	Π	128
1	1	0	0	0	0	0	0	Ш	192
1	1	1	0	0	0	0	0	Ш	224
1	1	1	1	0	0	0	0	II	240
1	1	1	1	1	0	0	0	II	248
1	1	1	1	1	1	0	0	Ш	252
1	1	1	1	1	1	1	0		254
1	1	1	1	1	1	1	1		255

Exercice 1 : écrivez le masque

255	255	255	0	=	/24
255	255	255	128	=	?
255	255	255	192	=	?
255	255	255	224	=	?
255	255	255	240	=	?
255	255	255	248	=	?
255	255	255	252	=	?
255	255	255	254	=	?
255	255	255	255	=	?

255	255	255	0	=	/24
255	255	255	128	Η	/25
255	255	255	192	Η	/26
255	255	255	224	=	/27
255	255	255	240	=	/28
255	255	255	248	Η	/29
255	255	255	252	=	/30
255	255	255	254	=	/31
255	255	255	255	=	/32

Exercice 2 : écrivez le masque

255	255	?	?	=	/16
255	255	?	?	Η	/17
255	255	?	?	Η	/18
255	255	?	?	=	/19
255	255	?	?	=	/20
255	255	?	?	=	/21
255	255	?	?	=	/22
255	255	?	?	=	/23
255	255	?	?	=	/24

255	255	0	0	=	/16
255	255	128	0	=	/17
255	255	192	0	=	/18
255	255	224	0	=	/19
255	255	240	0	=	/20
255	255	248	0	=	/21
255	255	252	0	=	/22
255	255	254	0	=	/23
255	255	255	0	=	/24

Taille d'un réseau

- Lorsqu'on rallonge le masque de 1 bit :
- Exemple :
 - de /24 = 111111111111111111111111100000000
 - pour ce réseau initial :
 - nombre d'@ consommées = 256 = 2⁸
 - nombre d'@ disponibles = **254** = 2⁸ 2
 - - pour chaque nouveau réseau :
 - nombre d'@ consommées = **128** = 2⁷
 - nombre d'@ disponibles = $126 = 2^7 2$

Taille d'un réseau

- Lorsqu'on rallonge le masque de 2 bits :
- Exemple :
 - de /24 = 111111111111111111111111100000000
 - pour ce réseau initial :
 - nombre d'@ consommées = 256 = 2⁸
 - nombre d'@ disponibles = **254** = 2⁸ 2
 - - pour chaque nouveau réseau :
 - nombre d'@ consommées = 64 = 2⁶
 - nombre d'@ disponibles = $62 = 2^6 2$

Taille d'un réseau

- Lorsqu'on rallonge le masque de N bits :
- Exemple :
 - de /24 = 111111111111111111111111100000000
 - pour ce réseau initial :
 - nombre d'@ consommées = 256 = 2⁸
 - nombre d'@ disponibles = **254** = 2⁸ 2
 - - pour chaque nouveau réseau :
 - nombre d'@ consommées = 2^(8-N)
 - nombre d'@ disponibles = 2^(8-N) -2

Apprendre par coeur

	Masque	Largeur du bloc = @ consommées	Nombre d'hôtes = @ disponibles
/24	255.255.255.0	2 ⁸ =256	254
/25	255.255.255.128	2 ⁷ =128	126
/26	255.255.255.192	2 ⁶ =64	62
/27	255.255.255.224	2 ⁵ =32	30
/28	255.255.255.240	2 ⁴ =16	14
/29	255.255.255.248	2 ³ =8	6
/30	255.255.255.252	2 ² =4	2
/31	255.255.255.254	2 ¹ =2	0

VLSM

- Variable Length Subnet Mask
- Tous les sous-réseaux n'ont pas le même masque.
- Exemple :
 - 192.168.0.0 /25 pour le VLAN A
 192.168.0.128 /26 pour le VLAN B
 192.168.0.192 /28 pour le VLAN C

Le plus petit sous-réseau

- Utilisé pour des réseaux point à point
 exemple : WAN
- Masque en /30
 - Exemple :
 - Première adresse IP disponible :
 - Seconde adresse IP disponible :
 - Adresse broadcast :
 - Sous-réseau suivant :

10.1.1.0/30 10.1.1.1 10.1.1.2 10.1.1.3 10.1.1.4 /30

Exercice 1

- Est-ce que 172.16.1.48 est :
 - une adresse réseau ?
 - une adresse disponible pour un hôte ?
 - une adresse broadcast ?

Exercice 1

- Tout dépend du masque !!
- 172.16.1.48 /24
- 172.16.1.48 /25
- 172.16.1.48 /26
- 172.16.1.48 /27
- 172.16.1.48 /28

	Masque	Largeur du bloc	Nombre d'hôtes
/24	255.255.255.0	2 ⁸ =256	254
/25	255.255.255.128	2 ⁷ =128	126
/26	255.255.255.192	2 ⁶ =64	62
/27	255.255.255.224	2 ⁵ =32	30
/28	255.255.255.240	2 ⁴ =16	14

Explications 1

- 172.16.1.48 /24
- 172.16.1.48 /25
- 172.16.1.48 /26
- 172.16.1.48 /27
- 172.16.1.48 /28

- adresse hôte
- adresse hôte
- adresse hôte
- adresse hôte
- adresse réseau

Exercice 2 : identifier l'adresse réseau

Adresse	Masque	Adresse sous-réseau
172.16.2.10	255.255.255.0	
10.6.24.20	255.255.240.0	
10.30.36.12	255.255.255.0	
192.168.1.129	255.255.255.128	

	Masque	Largeur du bloc	Nombre d'hôtes
/24	255.255.255.0	2 ⁸ =256	254
/25	255.255.255.128	2 ⁷ =128	126
/28	255.255.255.240	2 ⁴ =16	14

Adresse	Masque	Adresse sous-réseau
172.16.2.10	255.255. 255 .0	172.16.2.0
10.6.24.20	255.255. 240 .0	10.6.16.0
10.30.36.12	255.255. 255 .0	10.30.36.0
192.168.1.129	255.255.255. 128	192.168.1.128

	Masque	Largeur du bloc	Nombre d'hôtes
/24	255.255.255.0	2 ⁸ =256	254
/25	255.255.255.128	2 ⁷ =128	126
/28	255.255.255.240	2 ⁴ =16	14

Exercice 3 : identifier les @ réseau & br

Adresse	Masque	Adresse sous-réseau	Adresse broadcast
201.222.10.60	255.255.255. 248		
15.16.193.6	255.255. 248 .0		
128.16.32.13	255.255.255. 252		
153.50.6.27	255.255.255. 128		

	Masque	Largeur du bloc = @ consommées	Nombre d'hôtes = @ disponibles
/25	255.255.255.128	2 ⁷ =128	126
/29	255.255.255.248	2 ³ = 8	6
/30	255.255.255.252	2 ² =4	2

Adresse	Masque	Adresse sous-réseau	Adresse broadcast
201.222.10.60	255.255.255.248	201.222.10.56	201.222.10.63
15.16.193.6	255.255.248.0	15.16.192.0	15.16.199.255
128.16.32.13	255.255.255.252	128.16.32.12	128.16.32.15
153.50.6.27	255.255.255.128	153.50.6.0	153.50.6.127

	Masque	Largeur du bloc = @ consommées	Nombre d'hôtes = @ disponibles
/25	255.255.255.128	2 ⁷ =128	126
/29	255.255.255.248	2 ³ = 8	6
/30	255.255.255.252	2 ² =4	2

Le subnetting :

- 1. L'adresse IP et son masque
- 2. Les adresses réservées
- 3. Les classes
- 4. Le nombre d'adresses par réseau
- 5. Le subnetting sur un octet entier
- 6. Le subnetting sur un octet partiel
- 7. Cas pratiques

Cas concrêt

- On vous a attribué le sous-réseau 172.16.1.0 /24
- Choisir un sous-réseau pour :

- LAN 1 = 172.16.1.X /25 : largeur de bloc = 128
- LAN 2 = 172.16.1.X /26 : largeur de bloc = 64
- WAN = 172.16.1.X / 30 : largeur de bloc = 4

172	16	1	0	Adresse <mark>réseau</mark>		
			1	1 ^{ère} adresse disponible		
				2 ^{ème} adresse disponible		
				3 ^{ème} adresse disponible	Lin bloc do 128	
			63		pour le LAN 1 avec 68 hôtes	
			64			
			65			
			126	Dernière adresse disponible		
			127 🔻	Adresse de broadcast		
			128			
			129			
			190			
			191			
			192			
			193			
			255			

172	16	1	0	Adresse réseau		
			1	1 ^{ère} adresse disponible		
				2 ^{ème} adresse disponible		
				3 ^{ème} adresse disponible	Lin bloc do 129	
			63		pour le LAN 1 avec 68 hôtes	
			64			
			65			
			126	Dernière adresse disponible		
			127 🔻	Adresse de broadcast		
			128	Adresse réseau	Un bloc de <mark>64</mark>	
			129	1 ^{ère} adresse disponible	nour le LAN 2	
					pour le LAIV 2	
			190	Dernière adresse disponible		
			191 🔶	Adresse de broadcast		
			192			
			193			
			255			

- LAN 1 = 172.16.1.0 /25
- LAN 2 = 172.16.1.128 /26
- WAN = 172.16.1.**192** / **30**

Test

You have been asked to come up with a subnet mask that will allow all three web servers to be on the same network while providing the maximum number of subnets. Which network address and subnet mask meet this requirement?

- A. 192.168.252.0 255.255.255.252
- B. 192.168.252.8 255.255.255.248
- C. 192.168.252.8 255.255.255.252
- D. 192.168.252.16 255.255.255.240
- E. 192.168.252.16 255.255.255.252

Correct Answer: B

	Masque	Largeur du bloc	Nombre d'hôtes	
/26	255.255.255.192	2 ⁶ =64	62	
	255.255.255.224		30	
/28	255.255.255.240	2 ⁴ =16	14	
/29	255.255.255.248	2 ³ = 8	6	ok pour 3 hosts
/30	255.255.255.252	2 ² =4	2	
/31	255.255.255.254	2 ¹ =2	0	

All of the routers in the network are configured with the ip subnet-zero command. Which network addresses should

be used for Link A and Network A? (Choose two.)

- A. Link A 172.16.3.0/30
- B. Link A 172.16.3.112/30
- C. Network A 172.16.3.48/26
- D. Network A 172.16.3.128/25
- E. Link A 172.16.3.40/30
- F. Network A 172.16.3.192/26

Correct Answer: AD
Test

How many usable host are there per subnet if you have the address of 192.168.10.0 with a subnet mask of 255.255.255.240?

A. 4 B. 8 C. 16 D. 14

Correct Answer: D

	Masque	Largeur du bloc	Nombre d'hôtes	
/26	255.255.255.192	2 ⁶ =64	62	
	255.255.255.224		30	
/28	255.255.255.240	2 ⁴ =16	14	
/29	255.255.255.248	2 ³ =8	6	
/30	255.255.255.252	2 ² =4	2	
/31	255.255.255.254	2 ¹ =2	0	

ROUTAGE

Routage statique

Introduction

Enrichir la table de routage

• Route statique :

- saisie manuellement par l'administrateur
 - Sécurité car seul l'administrateur peut changer les tables de routage
- aucune charge sur l'utilisation de la bande passante
- administration fastidieuse
- la distance administrative d'une route statique est égale à 1 par défaut.
- Protocole de routage :
 - il suffit d'activer un protocole de routage
 - adaptation automatique en cas de modification de la topologie du réseau

Route statique pour 192 à partir de R1

192.168.0.0 /24

	Réseau	Masque	Next-Hop	Interface
С	12.0.0.0	/24		Fa0/2
С	13.0.0.0	/24		Fa0/0
ഗ	192.168.0.0	/24	via 13.0.0.3	

Route statique pour 23 à partir de R1

192.168.0.0 /24

	Réseau	Masque	Next-Hop	Interface
С	12.0.0.0	/24		Fa0/2
С	13.0.0.0	/24		Fa0/0
S	23.0.0.0	/24	via 13.0.0.3	
S	192.168.0.0	/24	via 13.0.0.3	
			FORMATION CCNA	2018 v3-3.0 61

Seconde route statique pour 23

192.168.0.0 /24

réseau destination

next-hop

	Réseau	Masque	AD	Next-Hop	Interface
С	12.0.0.0	/24			Fa0/2
С	13.0.0.0	/24			Fa0/0
S	23.0.0.0	/24	1	via 13.0.0.3	
			1	via 12.0.0.2	
S	192.168.0.0	/24	1	via 13.0.0.3	

Route statique flottante pour 192

192.168.0.0 /24

	Réseau	Masque	AD	Next-Hop	Interface
С	12.0.0.0	/24			Fa0/2
С	13.0.0.0	/24			Fa0/0
S	23.0.0.0	/24	1	via 13.0.0.3	
S	192.168.0.0	/24	1	via 13.0.0.3	

620

Routage statique

Route par défaut

Route statique par défaut

ip route 0.0.0.0 0.0.0.0 172.16.0.1

Sur FAI :

ip route 10.0.0.0 255.255.255.0 172.16.0.2

Route statique par défaut

Sur R1, show ip route :

	Réseau	Masque	AD	Next-Hop	Interface
С	10.0.0.0	/24			Fa0/2
С	172.16.0.0	/24			Fa0/0
S*	0.0.00	/0	1	via 172.16.0.1	

Route statique sans next hop

ip route 0.0.0.0 0.0.0.0 Fa0/0

La distance administrative de cette route statique sera égale à 0.

Routage dynamique

Types et familles de protocoles

Principe des Protocoles de routage

- Les routeurs <u>échangent</u> des informations.
- Ces échanges leur permettent d'enrichir de manière <u>automatique</u> leurs tables de routages.
- En cas de modification de la topologie du réseau, les tables de routage sont mises à jour de manière <u>dynamique</u>.

Le Système Autonome

- C'est un ensemble de réseaux gérés par une seule et même entité administrative.
- C'est donc un ensemble de réseaux possédant une politique de routage qui lui est propre et indépendante.
- Internet est constitué de Systèmes Autonomes.
- Un AS est identifié par un numéro entre 1 et 65535.

2 familles de protocoles de routage

- IGP Interior Gateway Protocol
 - protocoles de routage utilisés au sein d'un même AS
 - Exemples :
 - RIP
 - OSPF
 - EIGRP
- EGP Exterior Gateway Protocol
 - protocole de routage utilisé entre 2 AS
 - BGP

Distance Vector and Link-State Routing Protocols

2 familles de protocoles de routage

2 types de protocoles de routage

- Les protocoles à vecteur de distance :
 - Routage par « rumeur »
 - Le routeur envoie à son voisin une copie de sa table de routage.
 - Exemple : RIP (Routing Information Protocol)
- Les protocoles à état de lien :
 - Cartographie du réseau
 - Le routeur fait suivre à son voisin les informations détaillées reçues d'autres voisins.
 - Exemple : OSPF (Open Shortest Path First)

Routage dynamique

Métrique et AD

La métrique

- C'est un critère utilisé pour déterminer le 'meilleur' chemin.
- R1 va-t-il passer par R2 ou R3 pour atteindrer le réseau 192.168.0.0/24 ?
- R1 prendra le chemin dont la métrique est la plus petite.

La métrique de RIP

- RIP indique à R1 de passer par R3.
- Se peut-il que RIP lui indique de passer par R2 ?

La métrique d'OSPF

- OSPF indique à R1 de passer par R2.
- R1 reçoit donc 2 informations contradictoires

Comparer 2 protocoles de routage

- A chaque protocole est attribué une **Distance administrative** arbitraire.
- Si 2 protocoles sont en concurrence, le routeur préfère le chemin dont la Distance administrative est la plus **petite**.
 - RIP = 120
 - OSPF = 110
 - EIGRP=90
- La distance administrative d'une route statique :
 - avec next-hop est égale à 1.
 - sans next-hop (sur une interface) est égale à 0.

Show ip route avec RIP

	Réseau	Masque	AD / métrique	Next-Hop	Interface
С	12.0.0.0	/24			Fa0/2
С	13.0.0.0	/24			Fa0/0
R	192.168.0.0	/24	[120 / 1]	via 13.0.0.3	

Show ip route avec OSPF

	Réseau	Masque	AD / Métrique	Next-Hop	Interface
С	12.0.0.0	/24			Fa0/2
С	13.0.0.0	/24			Fa0/0
0	192.168.0.0	/24	[110 / 2]	via 12.0.0.2	

Show ip route avec RIP et OSPF

192.168.0.0 /24

	Réseau	Masque	AD / Métrique	Next-Hop	Interface
С	12.0.0.0	/24			Fa0/2
С	13.0.0.0	/24			Fa0/0
0	192.168.0.0	/24	[110 / 2]	via 12.0.0.2	

Règle de sélection du meilleur chemin.

1.Chemin dont AD est le plus petit.

•2 Chemin dont la métrique est la plus petite

- Cette règle est partielle.
- Elle sera complétée ultérieurement.

Routage dynamique

Summarization

Sans summarization

R

192.168.0.128

/25

[120 / 1]

FORMATION CCNA 2018

13.0.0.1

v3-3.0 643

Avec summarization

R

192.168.0.0

/24

Une seule ligne apprise par R3.

[120 / 1]

FORMATION CCNA 2018

13.0.0.1

v3-3.0 644

Avantages et prérequis

- La summarization permet de fusionner plusieurs sous-réseaux d'un même réseau majeur.
- Le protocole de routage annoncera le réseau fusionné au lieu d'annoncer chacun des sousréseaux.
- Avantage : Réduction de la taille des tables de routage.
- Prérequis : Nécessite un plan d'adressage judicieusement défini.

Fusion exacte

- Sous-réseaux initiaux :
 - 10.0.0.0 /24
 - 10.0.1.0 /24
- Après fusion, annonce du réseau :
 - 10.0.0.0 /23
- La réseau fusionné est bien la somme des 2 sous-réseaux initiaux.

Fusion inexacte

- Sous-réseaux initiaux :
 - 10.0.0.0 /24
 - 10.0.1.0 /24
- Après fusion, annonce du réseau :
 - 10.0.0.0 /16
- La réseau fusionné contient bien d'autres réseaux que les 2 sous-réseaux initiaux.

Exercice 1

- Sous-réseaux initiaux :
 - 192.168.0.0/24
 - 192.168.1.0/24
- La meilleure summarization possible est :
 - 192.168.0.0/23
- Sous-réseaux initiaux :
 - 192.168.2.0/24
 - 192.168.3.0/24
- La meilleure summarization possible est :
 - 192.168.2.0/23

- Sous-réseaux initiaux :
 - 192.168.0.0/<mark>24</mark>
 - 192.168.1.0/24
 - 192.168.2.0/24
 - 192.168.3.0/<mark>24</mark>
- La meilleure summarization possible est :
 - 192.168.0.0/<mark>22</mark>

- Sous-réseaux initiaux :
 - 192.168.0.0/25
 - 192.168.0.128/25
- La meilleure summarization possible est :
 - 192.168.0.0/24

- Sous-réseaux initiaux :
 - 192.168.0.0/<mark>26</mark>
 - 192.168.0.64/26
- La meilleure summarization possible est :
 - 192.168.0.0/25

- Sous-réseaux initiaux :
 - 192.168.0.128/<mark>26</mark>
 - 192.168.0.192/26
- La meilleure summarization possible est :
 - 192.168.0.128/25

- Sous-réseaux initiaux :
 - 192.168.0.0/<mark>26</mark>
 - 192.168.0.<mark>64/26</mark>
 - 192.168.0.128/<mark>26</mark>
 - 192.168.0.192/<mark>26</mark>
- La meilleure summarization possible est :
 - 192.168.0.0/24

Summarizations hiérarchiques

FORMATION CCNA 2018

Test

Refer to the exhibit. What is the most appropriate summarization for these routes?

- A. 10.0.0.0/21
- B. 10.0.0.0/22
- C. 10.0.0.0/23
- D. 10.0.0/24
- Correct Answer: B

Routage dynamique

Summarization automatique

Principe

- Pour réduire la taille des tables de routage, certains protocoles effectuent de manière automatique une summarization à la frontière des réseaux majeurs.
- Ce sont les protocoles RIP et EIGRP.

Exemple

même réseau majeur 10.0.0.0 /8

Annonce du réseau 10.0.1.0/24 de R1 à R2 :

- R1 envoie cette annonce à R2.
- Le sous-réseau entre R1 et R2 est 10.0.2.0 /24.
- 10.0.1.0/24 et 10.0.2.0 /24 appartiennent au même réseau majeur.
- R1 n'applique pas de summarization automatique.
- R1 annonce donc 10.0.1.0 /24 à R2

Exemple, suite

réseau majeur DIFFERENT

Annonce du réseau 10.0.1.0/24 de R2 à R3 :

- R2 envoie cette annonce à R3.
- Le sous-réseau entre R2 et R3 est 23.0.0.0 /24.
- 10.0.1.0/24 et 23.0.0.0 /24 n'appartiennent pas au même réseau majeur.
- R2 applique DONC la summarization automatique.
- R2 annonce donc 10.0.0.0 /8 à R2

FORMATION CCNA 2018

Frontière des réseaux majeurs

La summarization automatique ne concerne que les annonces qui traversent les frontières de réseaux majeurs.

show ip route

FORMATION CCNA 2018

v3-3.0 662

Désactiver

- Par défaut, RIP et EIGRP effectuent la summarization automatique.
- Elle peut être désactivée avec la commande suivnate :
 - no auto-summary
- et re-activée par :
 - auto-summary

Avec no auto-summary

Problème avec réseaux disjoints

R2 croit qu'il peut joindre le réseau 10.0.0.0/8 indifféremment via R1 ou R3. Il enverra un paquet à R1, le suivant à R3.

Il faut désactiver auto-summary !

FORMATION CCNA 2018

Routage dynamique

Maîtriser la Table de routage

Exemple 1/3

Exemple 2/3 sur R1

Exemple 3/3

Exploitation de la table - Cas 1

Exploitation de la table - Cas 2

FORMATION CCNA 2018

Règle de sélection du meilleur chemin.

- Route la plus précise,
 i.e. avec le masque le plus long.
- 2. Chemin dont AD est le plus petit.
- 3. Chemin dont la métrique est la plus petite

• Cette règle est maintenant complète.

RIP

Routing Information Protocol

Carte d'identité de RIP

- Standard ou Propriétaire ?
- standard
- IGP / EGP ?
- IGP
- DV ou LS ?
- DV : Vecteur de distance
- Distance administrative : AD ?
- 120
- Métrique ?
- Σ hops
- Lettre qui identifie ce protocole dans sh ip route?
- R

FORMATION CCNA 2018

Les annonces

- « Updates »
- Envoyées toutes les 30 secondes.
- Version 1 = envoyées en broadcast.
 - •adresse IP destination = 255.255.255.255
- Version 2 = envoyées en multicast.
 - adresse IP destination = 224.0.0.9
- Envoyées sur toutes les interfaces où RIP est activé.

Activer RIP sur une interface

- configure terminal
- router rip
- network 10.0.0.0

signifie :

« active RIP dès qu'une de tes propres interfaces est dans le pool 10.0.0.0 /8 »

Exemples

- network 11.0.0.0
- activer RIP sur toutes les interfaces en 11.0.0.0 /8
- network 111.0.0.0
- activer RIP sur toutes les interfaces en 111.0.0.0 /8
- network 131.0.0.0
- activer RIP sur toutes les interfaces en 131.0.0.0 /16
- network 211.0.0.0
- activer RIP sur toutes les interfaces en 211.0.0.0 /24

677

v3-3.0 677

- Activer RIP sur toutes les interfaces
- router rip
- network 10.0.0.0

- Activer RIP sur toutes les interfaces
- router rip
- network 10.0.0.0
- network 172.16.0.0
- network 192.168.3.0

- Activer RIP sur Fa0/0 et Fa0/2 seulement :
- router rip
- network 10.0.0.0
- network 192.168.3.0

Partage de charge

- A métriques égales, RIP est capable de faire du partage de charge via 4 chemins différents.
- Configurable jusqu'à 16 :
- router rip
- maximum-path 1 pas de partage de charge
- maximum-path 4 valeur par défaut
- maximum-path 16 valeur maximale

Summarization automatique

- Pour réduire la taille des tables de routage, certains protocoles effectuent de manière automatique une summarization à la frontière des réseaux majeurs.
- Ce sont les protocoles RIP et EIGRP.

Exemple

même réseau majeur 10.0.0.0 /8

Annonce du réseau 10.0.1.0/24 de R1 à R2 :

- R1 envoie cette annonce à R2.
- Le sous-réseau entre R1 et R2 est 10.0.2.0 /24.
- 10.0.1.0/24 et 10.0.2.0 /24 appartiennent au même réseau majeur.
- R1 n'applique pas de summarization automatique.
- R1 annonce donc 10.0.1.0 /24 à R2

Exemple, suite

réseau majeur DIFFERENT

Annonce du réseau 10.0.1.0/24 de R2 à R3 :

- R2 envoie cette annonce à R3.
- Le sous-réseau entre R2 et R3 est 23.0.0.0 /24.
- 10.0.1.0/24 et 23.0.0.0 /24 n'appartiennent pas au même réseau majeur.
- R2 applique DONC la summarization automatique.
- R2 annonce donc 10.0.0.0 /8 à R2

FORMATION CCNA 2018
Frontière des réseaux majeurs

La summarization automatique ne concerne que les annonces qui traversent les frontières de réseaux majeurs.

show ip route

FORMATION CCNA 2018

v3-3.0 6<u>86</u>

Désactiver

- Par défaut, RIP et EIGRP effectuent la summarization automatique.
- Elle peut être désactivée avec la commande suivnate :
 - no auto-summary
- et re-activée par :
 - auto-summary

Avec no auto-summary

Problème avec réseaux disjoints

R2 croit qu'il peut joindre le réseau 10.0.0.0/8 indifféremment via R1 ou R3. Il enverra un paquet à R1, le suivant à R3.

Il faut désactiver auto-summary !

Passer en RIP version 2

- configure terminal
- router rip
- version 2

RIP sait maintenant indiquer le masque des réseaux qu'il annonce.

Va-t-il toujours annoncer le vrai masque ?

NON !

600

v3-3.0 690

Annoncer le vrai masque

- configure terminal
- router rip
- version 2
- no auto-summary

601

Routage OSPF

OSPF

Open Shortest Path First

Carte d'identité de OSPF

- Standard ou Propriétaire ?
- standard
- IGP / EGP ?
- IGP, capable de gérer VLSM
- DV ou LS ?
- LS : Link-State
- Distance administrative : AD ?
- 110
- Métrique ?
- Σ coûts
- Lettre qui identifie ce protocole dans sh ip route?
- 0

© www.ccna-lab.com 2011

694

RIP ou OSPF ?

 Si un routeur reçoit 2 annonces pour exactement le même sous-réseau et le même masque :

• l'une de RIP, métrique 5

• l'autre de OSPF, métrique 10

• Laquelle sera préférée ?

• OSPF

- car on compare les Distances Administratives :
 - la plus petite AD est préférée
 - 110 < 120
 - OSPF est préférable à RIP

La métrique d'OSPF 1/2

 Chaque interface a un coût : BW = bande passante 	10 ⁸
 Exprimée en bits/s 	BW

- Exemples :
 - FastEthernet 100 Mb/s coût = 1
 - Ethernet 10 Mb/s coût = 10
 - 1 Mb/s coût = 100
 - Serial 1,544 Mb/s coût ≈ 65

La métrique d'OSPF 2/2

 La métrique est la somme des coûts : celui de l'interface ajouté à ceux des interfaces traversés

Exercice 1

• La métrique est la somme des coûts.

Solution 1

• La métrique est la somme des coûts.

Formule inadaptée

• Le coût doit être un entier.

• Ceci pose problème pour toutes les bandes passantes supérieures à 100 Mb/s

• Exemples :

- 100 Mb/s coût = 1
- 1 Gb/s coût = 0,1 ramené à 1
- 10 Gb/s coût = 0,01 ramené à 1
- Conséquence :

• Par défaut, OSPF ne sait pas faire de distinction entre 100 Mb/s et 1 Gb/s

Adapter la formule 1/2

- On peut configurer OSPF pour qu'il adapte la formule de calcul du coût.
- Exemples :

	Formule de calcul du coût :	Le coût de 1 est attribué à :	soit :	« Reference bandwidth » =
Valeur par défaut :	$\frac{10^8}{\mathrm{BW}}$	100 Mb/s	100 Mb/s	100
	$\frac{10^9}{BW}$	1 Gb/s	1000 Mb/s	1000
	$\frac{10^{10}}{BW}$	10 Gb/s	10,000 Mb/s	10,000

Adapter la formule 2/2

- configure terminal
- router ospf 1
 - auto-cost reference-bandwidth **100**
 - valeur par défaut
 - auto-cost reference-bandwidth 1000
 - pour tenir compte de bandes passantes jusqu'à 1000 Mb/s, soit 1 Gb/s

Saisir cette commande sur tous les routeurs !

Exercice 2

auto-cost reference-bandwidth 100

Solution 2

auto-cost reference-bandwidth 100

Exercice 3

auto-cost reference-bandwidth 1000

Solution 3

auto-cost reference-bandwidth 1000

Modifier le coût OSPF

- Le coût associé à une interface peut être modifié de 2 manières :
 - soit en configurant directement ce coût
 - soit en modifiant la bande passante de l'interface

Configurer le coût

configure terminal

interface gi0/0

ip ospf cost 10

Le routeur ne tiendra plus compte de la bande passante de l'interface pour calculer le coût de l'interface

Modifier la bande passante

Attention : o	d'autres protocoles modifica	seront impactés par ation.	cette
е	en kbit/s		
bandwidth 1	LO 000		
interface G	Gi0/0		
configure t	cerminal		

Exemple : STP, EIGRP

OSPF

Un protocole à ETATS de LIENS : LS

« Link State »

DV et LS

- Les protocoles à Vecteur de distance envoient à leurs voisins une partie de leur table de routage.
 - cette information sera-t-elle transférée par le voisin à un tiers ?
- Les protocoles à Etat de Lien envoient à leurs voisins des données sur les réseaux auxquels ils sont connectés.
 - cette information sera-t-elle transférée par le voisin à un tiers ?

DV : Le transfert d'une annonce

1. R1 me dit que je peux atteindre le sous-réseau 10.0.0.0 /24 en 5 hops, AD 120.

2. Ai-je une meilleure route vers 10.0.0.0 /24 ?

DV : Le transfert d'une annonce

OUI : j'ai une meilleure route vers 10.0.0.0 /24 !

Je ne tiens pas compte de l'annonce reçue, i.e. je ne modifie pas ma table de routage.

Je ne transfère pas cette annonce à R3

DV : Le transfert d'une annonce

NON : je n'ai pas de meilleure route vers 10.0.0.0 /24 !

Je tiens compte de l'annonce reçue, i.e. j'injecte cette route dans ma table de routage.

Je transfère à R3 une annonce modifiée : j'ai mis à jour la métrique.

LS : Le transfert d'une annonce

1. R1 m'envoie une annonce avec les informations suivantes :

« le routeur R9 est connecté au sous-réseau 10.0.0.0 /24, coût du lien 5, AD 110. »

2. Je ne me pose pas la question de savoir si j'ai une meilleure route vers 10.0.0.0 /24 !

LS : Le transfert d'une annonce

J'envoie systématiquement cette information à mes voisins, sans la modifier (*) :

« le routeur R9 est connecté au sous-réseau 10.0.0.0 /24, coût du lien 5, AD 110. »

(*) des exceptions sont étudiées niveau CCNP

LS : les annonces

Ces annonces s'appellent des LSA :
 Link State Advertisement

- Elles contiennent :
 - l'identité du routeur qui a généré l'annonce
 le ROUTER-ID
 - le sous-réseau annoncé
 - le masque de sous-réseau
 - la distance administrative
 - le coût du lien
 - etc....

Router-ID

- C'est une adresse IP.
- Le Router-ID peut être configuré manuellement :
 - conf t

```
• router ospf 1
```

```
• router-ID 1.1.1.1
```

- Sinon, il sera calculé automatiquement :
 - Existe-t-il une interface LOOPBACK ?
 - Si OUI, alors
 - le Router-ID = la plus grande adresse IP des interfaces Loopback.
 - Si NON, alors
 - le Router-ID = la plus grande adresse IP des interfaces UP

Exercice 1

Router	Router-ID
R1	?
R2	?
R3	?

Solution 1

Router	Router-ID
R1	13.0.0.1
R2	23.0.0.2
R3	23.0.0.3

Router	Router-ID
R1	?
R2	?
R3	?

Quelque soit l'état des interfaces physiques !

FORMATION CCNA 2018

LSA

- Pourquoi les LSA sont-ils systématiquement envoyés à tous les voisins ?
- Pour que chaque routeur puisse construire la topologie globale du réseau.
- Les protocoles à états de liens ne se basent pas sur des rumeurs :
- 1. Chacun identifie ses voisins (routeur directement connecté)
- 2. Chacun construit la cartographie du réseau.
- 3. Chacun applique ensuite un algorithme pour décider du chemin qu'il prendra pour atteindre les sous-réseaux annoncés.

Ressources

- Mémoriser la cartographie :
 - nécessite de la RAM
- Appliquer un algorithme :
 - nécessite du CPU

Problèmes pour « grands » réseaux.

Solution : découper la réseau en plusieurs AIRES

OSPF

Optimiser les ressources

Sans aires

• A et B auront en mémoire la même cartographie, i.e. TOUT le réseau.

• A et B devront appliquer l'algorithme à toute la cartographie, i.e. TOUS les sous-réseaux.

Rôles

- R1 : Internal Router.
- R2, R3 : Area Border Router = ABR.
- R4 : Autonomous Sytem Border Router = ASBR.
- Area 0 : Backbone = toutes les autres aires doivent lui être rattachées.

Intérêts des Aires 1/3

 R31 (internal) va générer au moins 4 LSA, une pour chacun de ses 4 sous-réseaux.

FORMATION CCNA 2018

Intérêts des Aires 2/3

• R3 (ABR) va résumer les 4 sousréseaux en un seul sous-réseau.

FORMATION CCNA 2018

Intérêts des Aires 3/3

- R1 (internal) n'aura donc qu'une seule LSA pour ces 4 sousréseaux.
 - Moins de RAM nécessaire pour conserver en mémoire la cartographie du réseau
 - Moins de CPU nécessaire pour exécuter l'algorithme
 - si bagotage d'un des 4 sous-réseaux, aucun impact sur la summary.
 - l'instabilité est donc confinée à une seule aire
 - Pas de perte de connectivité
 - Convergence plus rapide

Le Masque Inversé

Le masque inversé (1 octet)

• Chaque bit est inversé, un par un.

• Exemple sur 1 octet :

Masque normal	1	1	1	1	1	0	0	0
Masque inversé	0	0	0	0	0	1	1	1

Exercice

• Inverser :

255	1	1	1	1	1	1	1	1
254	1	1	1	1	1	1	1	0
252	1	1	1	1	1	1	0	0
248	1	1	1	1	1	0	0	0
240	1	1	1	1	0	0	0	0
224	1	1	1	0	0	0	0	0
192	1	1	0	0	0	0	0	0
128	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Solution

• Réponse :

0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1
3	0	0	0	0	0	0	1	1
7	0	0	0	0	0	1	1	1
15	0	0	0	0	1	1	1	1
31	0	0	0	1	1	1	1	1
63	0	0	1	1	1	1	1	1
127	0	1	1	1	1	1	1	1
255	1	1	1	1	1	1	1	1

Formule d'inversion sur 1 octet

Masque normal	Masque inversé
255	0
254	1
252	3
248	7
240	15
224	31
192	63
128	127
0	255

Masque normal + Masque inversé = 255

Le masque inversé (4 octets)

- Chaque octet est inversé, un par un.
- Exemple sur 4 octets:

Masque normal	255	255	255	128
Masque inversé	0	0	0	127

OSPF

Configuration

Lancer OSPF

- configure terminal
- router ospf 1

signifie :

« lancer sur ce routeur un process OSPF et attribuer le numéro de process 1»

- on peut lancer plusieurs process OSPF sur un même routeur
- le numéro de process a une portée LOCALE
 - il n'est PAS nécessaire que deux routeurs voisins utilisent le même numéro de process.
 - Il est compris entre 1 et 65 535

Activer OSPF sur une interface

- configure terminal
- interface fa0/0
- ip ospf **1** area **0**

signifie :

« activer le process OSPF 1 sur cette interface et la positionner dans l'aire 0 »

Activer OSPF sur une interface

Autre commande :

- configure terminal
- •router ospf 1

•network 10.0.0.0 0.0.0.255 area 0

masque inversé

signifie :

« activer OSPF sur toute interface dont l'adresse IP est 10.0.0.X et positionner cette interface dans l'aire 0»

Masques « extrêmes »

Activer sur TOUTES les interfaces en une seule commande :

• network 0.0.0.0 255.255.255 area 0

• Activer sur UNE SEULE interface :

• network 1.1.1.1 0.0.0.0 area 0 activer sur 1.1.1.1

• network 2.2.2.2 0.0.0.0 area 0 activer sur 2.2.2.2

Vérifier les interfaces OSPF

Vérifier sur quelles interfaces OSPF est activé :

R1(config) #router ospf 1

R1(config-router) #network 0.0.0.0 255.255.255.255 area 0

(ou network 0.0.0.0 0.0.0.0 area 0)

R1#show ip ospf interface brief

Que signifie « Activer » ?

« Activer OSPF sur une interface »

signifie :

le routeur va chercher des voisins OSPF sur cette interface.

Il échangera ensuite des LSA avec tous ces voisins.

OSPF

Recherche de voisins

TROIS étapes

ETAPE 1	ETAPE 2	ETAPE 3
<u>Objectif :</u> Découvrir tous mes voisins directs.	<u>Objectif :</u> Construire la cartographie du réseau.	<u>Objectif :</u> Décider du chemin le plus court pour atteindre chaque sous- réseau annoncé.

Deux méthodes

Est-ce que les multicast sont autorisés sur cette interface ?

• Si OUI :

- recherche automatique des voisins
- utiliser l'adresse IP multicast 224.0.0.5.

• Si NON :

• recherche manuelle des voisins

FORMATION CCNA 2018

Recherche automatique

- Le routeur envoie des paquets HELLO sur l'interface :
 - envoyés à fréquence fixe :
 - selon la valeur du timer 'HELLO'
 - configurable
 - par défaut :
 - HELLO = 10 sec. sur un réseau 'broadcast' (Exemple : Ethernet)
 - HELLO = 30 sec. sur un réseau 'NBMA' (Exemple : Frame Relay)
 - ont une durée de vie limitée :
 - selon la valeur du timer 'DEAD'
 - configurable
 - par défaut :
 - DEAD = HELLO x 4
 - 40 secondes sur un réseau 'broadcast'
 - 120 secondes sur un réseau 'NBMA'

FORMATION CCNA 2018

Configurer un timer

- configure terminal
- interface fa0/0
- ip ospf hello-interval 5 » entre 1 et 65535 sec.

• Si vous changez la valeur de Hello, l'IOS adapte automatiquement celle du Dead : » Dead = Hello x 4

• ip ospf dead-interval 30 » entre 1 et 65535 sec.

Vérifier le timer

sh ip ospf interface

```
FastEthernet0/0 is up, line protocol is up
  Internet Address 12.0.0.1/24, Area 0
  Process ID 1, Router ID 10.0.0.2, Network Type BROADCAST,
Cost: 1
  Transmit Delay is 1 sec, State WAITING, Priority 1
  No designated router on this network
  No backup designated router on this network
  Timer intervals configured, Hello 10, Dead 40, Wait 40,
Retransmit 5
    oob-resync timeout 40
    Hello due in 00:00:09
    Wait time before Designated router selection 00:00:29
  Supports Link-local Signaling (LLS)
  Index 2/2, flood queue length 0
  Next 0 \times 0 (0) / 0 \times 0 (0)
  Last flood scan length is 0, maximum is 0
  Last flood scan time is 0 msec, maximum is 0 msec
  Neighbor Count is 0, Adjacent neighbor count is 0
  Suppress hello for 0 neighbor(s)
```

Le paquet HELLO

- Il est envoyé à l'adresse IP destination : 224.0.0.5
- Il contient les infos suivantes :
 - mon Router-ID
 - l'AREA de mon interface
 - la valeur de mon timer HELLO
 - la valeur de mon timer **DEAD**
 - les Router-ID de tous les voisins que j'ai déjà identifiés
 - etc...

La relation de voisinage

- Si je reçois un paquet HELLO avec :
 - la même valeur de AREA que la mienne
 - la même valeur du timer HELLO que le mien
 - la même valeur du timer DEAD que le mien
- Alors je reconnais cet individu comme un voisin :
 - je rajoute son Router-ID dans ma liste des voisins

La relation 'TWO-WAY'

- Si je reçois un paquet HELLO dans lequel je vois mon propre Router-ID :
 - ce voisin m'a reconnu comme voisin.
- Deux équipements qui se reconnaissent mutuellement comme voisins ont une relation dite 'TWO-WAY'

Réseaux NBMA

- Certains réseaux n'autorisent pas le multicast.
- Il faut alors configurer manuellement chaque voisin :

Cinq types de paquets OSPF

- 1. HELLO
- 2. DBD
 - Database Description
- 3. LSR
 - Link State Request
- 4. LSU
 - Link State Update
 - Contient les LSA = Link state advertisement
- 5. LSAck
 - Link State Acknowledgment

Format du paquet OSPF

- Encapsulé dans un paquet IP
 - Protocole n°89
- Contient les champs suivants :
 - N° de version = 2
 - Type de paquet = entre 1 et 5
 - Longueur du paquet
 - Router ID du routeur ayant généré ce paquet
 - Area ID dans lequel ce paquet a été généré
 - Checksum
 - Type authentification (none, clear, MD5)
 - Authentification (le mot de passe ou le hash)
 - Data

OSPF Packet Header Format

Le paquet HELLO

- Router-ID
- Hello timer
- Dead timer
- Liste des routers ID des voisins découverts
- Area ID
- Router priority
- Adresse IP du DR
- Adresse IP du BDR
- Authentification
- Stub area

OSPF

La cartographie

TROIS étapes

ETAPE 1	ETAPE 2	ETAPE 3
<u>Objectif :</u> Découvrir tous mes voisins directs.	<u>Objectif :</u> Construire la catographie du réseau.	<u>Objectif :</u> Décider du chemin le plus court pour atteindre chaque sous- réseau annoncé.

Echanges des LSA

 Dès que deux voisins sont 'TWO-WAY', ils commencent à s'envoyer tous leurs LSA.

• Lorsque l'échange est terminé, ils deviennent 'FULL' :

R1#show ip ospf neighbor

Neighbor	ID	Pri	State	Dead Time	Address	Interface
34.0.0.3		1	FULL	00:00:39	13.0.0.3	FastEthernet1/0
24.0.0.2		1	FULL	00:00:39	12.0.0.2	FastEthernet0/0

Le statut 'FULL'

- Ce statut indique que les 2 voisins ont maintenant la même vision du réseau, i.e. la même cartographie.
- La commande show ip ospf database permet de voir la cartographie du réseau.
- Cette commande donnera donc le même résultat sur les 2 voisins, pour l'aire dans laquelle sont configurées leurs interfaces.

Timers

• Tant qu'il n'y a pas de modification de topologie, je n'envoie que des paquets HELLO toutes les 10 sec.

• Chaque LSA est également renvoyé toutes les 30 minutes, pour une meilleure synchronisation des bases de données.

OSPF

L'algorithme

TROIS étapes

ETAPE 1	ETAPE 2	ETAPE 3
ETAPE 1 <u>Objectif :</u> Découvrir tous mes voisins directs.	ETAPE 2 <u>Objectif :</u> Construire la cartographie du réseau.	ETAPE 3 <u>Objectif :</u> Décider du chemin le plus court pour atteindre chaque sous- réseau
		annoncé.

Dijkstra

• Egalement appelé algorithme SPF : Shortest Path First

• Déterminer le chemin le plus court pour atteindre chaque réseau annoncé.

• Injecter ce chemin dans la table de routage, si pas de meilleur chemin déjà présent.

Exemple de topologie

Pour R1, quel est le chemin le plus court pour aller vers 10.0.0.0 /24 ?

Exemple d'application de l'algorithme Dijkstra

Métrique = somme des coûts

Le coût est égal à celui de l'interface ajouté de ceux des interfaces traversés.

Le chemin le plus court est injecté dans la table de routage, si elle ne contenait pas de meilleur chemin :

Vérifier les 3 étapes

ETAPE 1	ETAPE 2	ETAPE 3	
show ip ospf	show ip ospf	show ip	
neighbor	database	route ospf	

OSPF

Optimisation

DR et BDR

Avec 5 routeurs sur un même segment :

- Chaque routeur a 4 voisins.
- Il est 'FULL' avec chacun des 4 voisins.

Avec N routeurs :

- Un routeur joue le rôle de compilateur :
 - •DR = Designated Router.
- Tous les routeurs sont 'FULL' avec les DR.
- Les autres relations de voisinage sont 'TWO-WAY'.

7 relations 'FULL' DR **BDR**

- Et si le DR tombe en panne ?
 - Un autre routeur joue le rôle de back-up du DR : BDR
 - Tous les routeurs sont 'FULL' avec les BDR.
 - Les autres relations de voisinage sont 'TWO-WAY'.

Configuration finale

- 1 DR
- 1 BDR
- Les autres sont 'DROTHER'.

Priorité OSPF

- Chaque interface a une priorité.
- Par défaut, la priorité est égale à 1.
- Configurable entre 0 et 255 :
 - configure terminal
 - interface fa0/0
 - ip ospf priority 2

Le choix du DR

• Le DR est celui ...

dont la priorité est la plus grande.

une priorité de 0 signifie que ce routeur n'est pas éligible en tant que DR ni BDR

En cas d'égalité, le DR est celui ...
 dont le <u>Router-ID</u> est le plus grand.

le Router-ID est unique

Le choix du DR n'est pas préemptif !

Deux adresses multicast

- Les DR et BDR écoutent sur 224.0.0.6
- Tous les routeurs OSPF écoutent sur 224.0.0.5

- Pour communiquer avec le DR ou BDR, j'utilise 224.0.0.6
- Pour communiquer avec tout voisin OSPF, j'utilise 224.0.0.5

La route par défaut

- Aucune route par défaut n'est injectée par défaut.
- Un routeur peut annoncer une route par défaut :
 - default-information originate
 - uniquement si le routeur a lui-même une route par défaut
 - default-information originate always
 - même si le routeur n' a pas de route par défaut
 - default-information originate metric 10
 - pour préférer une route par défaut par rapport à une autre
- Le routeur anonçant la route par défaut devient alors un ASBR.

A network administrator is troubleshooting the OSPF configuration of routers R1 and R2. The routers cannot establish an adjacency relationship on their common Ethernet link.

The graphic shows the output of the show ip ospf interface e0 command for routers R1 and R2. Based on the information in the graphic, what is the cause of this problem?

- A. The OSPF area is not configured properly.
- B. The priority on R1 should be set higher.
- C. The cost on R1 should be set higher.
- D. The hello and dead timers are not configured properly.
- E. A backup designated router needs to be added to the network.
- F. The OSPF process ID numbers must match.

Correct Answer: D

- .. .

Which three statements about link-state routing are true? (Choose three.)

- A. OSPF is a link-state protocol.
- B. Updates are sent to a broadcast address.
- C. It uses split horizon.
- D. Routes are updated when a change in topology occurs.
- E. RIP is a link-state protocol.
- F. Updates are sent to a multicast address by default.

Correct Answer: ADF

Routage EIGRP

EIGRP

Enhanced Interior Gateway Routing Protocol

Carte d'identité d'EIGRP

- Standard ou Propriétaire ?
 - Propriétaire CISCO
- IGP / EGP ?

• IGP

• DV ou LS ?

• Advanced DV - Hybrid

• AD ?

• 90

- Lettre qui identifie ce protocole dans sh ip route?
 D
- Envois en broadcast ou multicast ?
 - 224.0.0.10

Métrique d'EIGRP

- Par défaut, calculée selon 2 critères
 - La Bande Passante
 - Le Délai
- Métrique = 256 * (10⁷ / BW + Σ DLY)
 - BW = la plus mauvaise des BW
 - Exprimée en kb/s
 - DLY exprimé en dizaines de µsec.

Métrique théorique

• Initialement, EIGRP, capable d'utiliser 5 critères:

• BW	K1	1
 Charge 	K2	0
• DLY	K3	1
 Fiabilité 	K4	0
• MTU	K5	0

Métrique = [K1 * 256*10^7 / BW + K2 * (BW / 256 - charge) + K3 * 256 Σ DLY] * (K5 / (K4 + fiabilité))

Configuration d'EIGRP

• # conf t

- # router eigrp 100
 - 100 représente le numéro de AS (système autonome privé)
- # network 192.168.10.0 0.0.0.255
 - activer EIGRP sur toute interface dont l'adresse IP appartient à 192.168.10.0/24

MASQUE INVERSE !

Timers EIGRP

- Selon le type de réseau
- ETHERNET :
 - HELLO = 5 sec
 - DEAD = 15 sec
- NBMA :
 - HELLO = 60 sec
 - DEAD = 180 sec
- Si vous changez la valeur de Hello, l'IOS ne modifie pas automatiquement celle du HOLD
 c'est l'inverse d'OSPF

Relations de voisinage

- OSPF exigeait....
- Même Area
- Même HELLO
- Même DEAD
- EIGRP exige....
- Même AS
- Même K1, K2, K3, K4, K5

Masque annoncé

- EIGRP, par défaut, annonce le masque naturel de la classe.
- i.e. par défaut, on a :
 - router EIGRP 100
 - •auto-summary
- pour annoncer le vrai masque:
 - router EIGRP 100
 - no auto-summary

EIGRP

L'algorithme DUAL

La terminologie DUAL

Quel est le meilleur chemin depuis R2 vers le sous-réseau 10.0.0/24 ?

Attention aux boucles !

R1 annonce à R2 une métrique de 110. R3 annonce à R2 une métrique de 90

RD & FS

Reported Distance = 90 feasible Successor = b

La terminologie DUAL

EIGRP Path Selection (Cont.)

Successeurs non retenus

```
R4# show ip eigrp topology all-links
IP-EIGRP Topology Table for AS(1)/ID(4.4.4.4)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply,
       r - reply Status, s - sia Status
P 10.0.12.0/24, 1 successors, FD is 6400, serno 95
       via 10.0.34.3 (6400/3840), Serial1/0
       via 10.0.45.5 (7680/6400), Serial1/1
P 10.0.13.0/24, 1 successors, FD is 5120, serno 91
       via 10.0.34.3 (5120/2560), Serial1/0
       via 10.0.45.5 (6400/5120), Serial1/1
P 10.0.23.0/24, 1 successors, FD is 5120, serno 94
       via 10.0.34.3 (5120/2560), Serial1/0
       via 10.0.45.5 (6400/5120), Serial1/1
P 10.0.45.0/24, 1 successors, FD is 1280, serno 90
       via Connected, Serial1/1
P 10.0.34.0/24, 1 successors, FD is 2560, serno 89
       via Connected, Serial1/0
P 10.0.35.0/24, 1 successors, FD is 3840, serno 96
        via 10.0.45.5 (3840/2560), Serial1/1
        via 10.0.34.3 (5120/2560), Serial1/0
P 192.168.5.0/24, 1 successors, FD is 1792, serno 97
       via 10.0.45.5 (1792/512), Serial1/1
       via 10.0.34.3 (5632/3072), Serial1/0
```

Deux types de partage de charge

• Partage de charge à métrique égale :

activé par défaut

- sur 4 chemins différents par défaut
- configurable jusqu' à 16 chemins différents :

```
• router eigrp 100
```

- maximum-path 16

• Partage de charge à métrique inégale :

désactivé par défaut

Par défaut EIGRP ne fait pas de partage de charge à métriques inégales : variance = 1.

Pour faire du partage de charge à métriques inégales :

- configurer la variance à V > 1
- permet d'utiliser tout chemin qui est V fois moins bon que mon meilleur chemin
- la commande maximum-path contrôle le nombre maximum de chemins injectés dans la table de routage

Variance

- Variance = 2 → NEXT-HOP c, b
- Variance = ? → NEXT-HOP c, b, a

- Variance = 2 → NEXT-HOP ?
- Variance = 6 → NEXT-HOP ?

Configurer la variance

• conf t

• router eigrp 100

•variance 2

• avec 1 < V < 128

• Pour voir comment se fait le partage de charge :

• Show ip route 10.0.0.0 /24

 \ll traffic share count X \gg

A router has learned three possible routes that could be used to reach a destination network. One route is from EIGRP and has a composite metric of 20514560. Another route is from OSPF with a metric of 782. The last is from RIPv2 and has a metric of 4. Which route or routes will the router install in the routing table?

- A. the OSPF route
- B. the EIGRP route
- C. the RIPv2 route
- D. all three routes
- E. the OSPF and RIPv2 routes

Correct Answer: B

A network administrator is troubleshooting an EIGRP problem on a router and needs to confirm the IP addresses of the devices with which the router has established adjacency. The retransmit interval and the queue counts for the adjacent routers also need to be checked. What command will display the required information ?

A. Router# show ip eigrp neighborsB. Router# show ip eigrp interfacesC. Router# show ip eigrp adjacencyD. Router# show ip eigrp topology

Correct Answer: A

eBGP

EBGP characteristics:

- Reliable updates: TCP port 179
- Interdomain routing—EGP
- Customer exchanges routes with the ISP
- ISPs exchange routes with other ISPs
- Scalable
- Secure
- Supports routing policies

Commande de vérification

Which command can you enter to verify that

a BGP connection to a remote device is established?

- A. show ip bgp summary
- B. show ip community-list
- C. show ip bgp paths
- D. show ip route

• Réponse : A

ROUTAGE IP v6

Routage statique

- Configuration:
 - •ipv6 unicast-routing

•ipv6 route ::/0 NEXT-HOP [AD]

•ipv6 route 2001:1::/64 NEXT-HOP [AD]

Protocoles de routage

Rappel sur IPv4:

- RIP
- OSPF
- EIGRP

<u>IPv6 :</u>

- RIPng
- OSPFv3
- EIGRP for IPv6

RIPng

• RFC 2080

• Similaire à RIP v2:

- vecteur de distance
- AD 120
- métrique = somme des sauts
- multicast FF02::9
- Différences avec RIPv2:
 UDP port 521 (port 520 sur IPv4)
 utilise adresses link-local

Q15

Configurer RIPng

- ipv6 unicast-routing (pas activé par défaut)
- ipv6 router rip **TAG** (identique entre voisins)
- interface fa0/0
 - ipv6 rip TAG enable
- debug ipv6 rip

<u>816</u>

Exemple RIPng

<u>817</u>

OSPFv3

• Similaire à OSPFv2:

- état de lien
- découverte des voisins
- AD 110
- métrique = somme des couts
- multicast FF02::5 & 6

• Différence avec OSPFv2:

• utilise les adresses link-local pour les adjacences

212

Configurer OSPFv3

- ipv6 unicast-routing
- ipv6 router ospf PROCESSrouter-id 0.0.0.1
- •interface fa0/0
 - •ipv6 ospf PROCESS area X
 - •ipv6 ospf cost 2
 - •ipv6 ospf hello-interval 10

Q10

EIGRP for IPv6

• Similaire à EIGRP:

• DV avancé ou hybride

• AD 90

métrique = 256 * (10^7/BW + somme (délais))

• multicast FF02::A

• Différences avec EIGRP:

• utilise les adresses link-local pour les adjacences

820

v3-3.0

820

Configurer EIGRP for IPv6

- ipv6 unicast-routing
- ipv6 router eigrp AS
 - •no shutdown
- interface fa0/0
 - •ipv6 eigrp AS

821

Vérifications

- show ipv6 interface brief
- show ipv6 route
- show ipv6 protocols
- show ipv6 rip
- show ipv6 ospf interface
- show ipv6 ospf neighbor
- show ipv6 ospf database
- show ipv6 eigrp interface
- show ipv6 eigrp neighbor
- show ipv6 eigrp topology

WAN

Couche Physique du WAN

- Le WAN interconnecte les sites distants
- Le type de connection dépend du besoin et des coûts

Les types de connections

Les encapsulations sur le WAN

Comparaison de OSI et TCP/IP dans le LAN

TCP/IP sur Ethernet est le modèle qui s'est imposé dans les réseaux locaux

Comparaison de OSI et TCP/IP dans le WAN

Le réseau étendu est caractérisé par les deux premières couches

Application	Application		
Présentation			
Session			
Transport	TCP ou UDP		
Réseaux	Internet Protocol		
Liaison de données	Dial/DSL/FR/HDLC/PPP		
Physique			

Couches physiques sur le WAN

- Les liens WAN sont vus par IP comme des couches 2
- Le type de lien détermine la bande passante

Routeur Cable Modem

To cable source

Routeurs DSL (RJ11)

• Le modem est branché sur la prise téléphonique

Réseau sans fil avec un controlleur

Fibre optique mono et bi directionel (DWDM)

Dimensions are in µm (10-6 meters)

Cœur entouré de la gaine

Connections RNIS (RJ 48)

- Le connecteur RJ48 est très semblable au RJ45 (un détrompeur en plus)
- L'accès de base (T0 en France) est utilisé pour tranporter de la voix numérisée ou des données

Connection Série

WAN Interface Card

- Le CSU/DSU est un modem numérique
- Il est utilisé pour les liaisons spécialisées

C'est le réseau opérateur qui est en charge de l'horloge

Connection Back-to-Back

- L'un des routeurs doit simuler le modem et envoyer l'horloge
- La fréquence d'horloge indique la vitesse :

Exemple : clock rate 64 000 pour 64 Kbits

WAN

Wide Area Network

Protocoles d'encapsulation

- Protocoles de Niveau 2 :
 - HDLC
 - High Data Link Control Protocol
 - PPP
 - point-to-point Protocol
 - Frame-Relay

- Sur interface serial
- Pour les commandes show, utiliser show interface (niveau 2) et non show ip interface (niveau 3)

HDLC

 C'est le protocole par défaut sur interface serial d'un équipement Cisco

Router#show interfaces serial 0/0

Serial0/0 is up, line protocol is up

Hardware is M4T

MTU 1500 bytes, BW 1544 Kbit, DLY 20000 usec,

reliability 255/255, txload 1/255, rxload 1/255

Encapsulation HDLC, crc 16, loopback not set

Entêtes HDLC CISCO

- CISCO n' utilise pas le standard HDLC de l' OSI conçu à la base pour X25.
 - Il rajoute un champ TYPE propriétaire pour indiquer le type de protocol encapsulé, c'est-à-dire IP.

• 2 octets

- On ne pourra faire du HDLC qu'entre équipements Cisco
- Entre routeurs de marque différente, il faudra passer en encapsulation ppp

Configuration

- configure terminal
- interface serial 0/0
- encapsulation hdlc

- C'est déjà l'encapsulation par défaut.
- Cette commande permet donc de revenir à HDLC si un autre protocole d'encapsulation avait été configuré.

Which command can you enter to determine whether serial interface 0/2/0 has been configured using HDLC encapsulation?

- A. router#show platform
- B. router#show interfaces Serial 0/2/0
- C. router#show ip interface s0/2/0
- D. router#show ip interface brief

• Réponse : B

Which two statements about using leased lines for your WAN infrastructure are true? (Choose two.)

- A. Leased lines provide inexpensive WAN access.
- B. Leased lines with sufficient bandwidth can avoid latency between endpoints.
- C. Leased lines require little installation and maintenance expertise.
- D. Leased lines provide highly flexible bandwidth scaling.
- E. Multiple leased lines can share a router interface.
- F. Leased lines support up to T1 link speeds.

• Réponse : CD

Which two statements about wireless LAN controllers are true? (Choose two.)

- A. They can simplify the management and deployment of wireless LANs.
- B. They rely on external firewalls for WLAN security.
- C. They are best suited to smaller wireless networks.
- D. They must be configured through a GUI over HTTP or HTTPS.
- E. They can manage mobility policies at a systemwide level.

• Réponse : AE

PPP

Point to Point Protocol

Avantages de PPP

- N' est pas propriétaire CISCO
 standard
- Gère l'autentification
- Gère le multi-link
- Surveille la qualité de la liaison
- Sait faire la compression

Deux familles de protocoles

- LCP
 - Link Control Protocol
 - Permet détablir la liaison avant d'envoyer des trames.
 - Gère les négotiations à effectuer avant de monter la liaison PPP session phase
 - Dans show interface, « LCP open » signifie les phases de négociation sont terminées et le trafic peut être envoyé.

• NCP

- Network Control Protocol
- Permet d'envoyer les trames du trafic.
- Gère l'encapsulation des paquets :
 - IPCP pour les paquets IP : IP Control Protocol
 - CDPCP pour les paquets CDP : CDP Control Protocol

- PPP can carry packets from several protocol suites using NCP.
- PPP controls the setup of several link options using LCP.

	IP	IPX	Layer 3	Protocols		
	IPCP	IPXCP	Many Others		Network Layer	
PPP	Network Control Protocol					
Authentication, Other Options					Data-Link Layer	
	Synchronous or Asynchronous Physical Media				Physical Layer	

PPP = Data link with network layer services

Configuration

- configure terminal
- interface serial 0/0
- encapsulation ppp

• show interface serial 0/0

L'authentification

- Objectif :
 - garantir l'identitié de l'équipement distant.
- Deux protocoles disponibles :
 - PAP :
 - Point-to-point Authentication Protocol
 - Le mot des passe est envoyé en clair
 - CHAP :
 - Challenge Handshake Authentication Protocol
 - Le mot de passe n'est pas envoyé

Handshake

Combien d'échanges sont nécessaires pour que R1 puisse authentifier R2?

PAP

Initiation de l'authentification

Lorsque R1 veut authentifier R2, qui initie le processus d'authentification ?

PAP

Le Mot de passe TOTO

Un individu qui écoute la communication pourrat-il facilement découvrir le mot de passe ?

Fonctionnement de PAP

- Deux étapes :
 - R2 envoie le mot de passe TOTO
 - R1 vérifie le mot de passe reçu et répond

Fonctionnement de CHAP

• Trois étapes :

- R1 envoie un challenge
 - différent à chaque fois
- R2 calcule le MD5 et envoie le résultat à R1
 - fonction mathématique
 - dont le résultat dépend
 - du challenge
 - du mot de passe TOTO
- R1 calcule le même MD5 et compare son résultat avec celui envoyé par R2

Exemple CHAP

- Trois étapes :
 - R1 envoie le XZ9GT
 - R2 calcule le MD5 (XZ9GT, TOTO) = ResA
 - R1 calcule le MD5 (XZ9GT, TOTO) = ResB
 - si ResA = ResB
 - alors R1 répond OK

Configuration de PAP

Configuration de PAP

hostname R1 username R2 password TOTO interface s0/0 encapsulation ppp ppp authentication pap hostname R2 username R1 password TOTO interface s0/0 encapsulation ppp R1 et R2 s' authentifient mutuellement

ppp authentication chap Seul R1 authentifie R2

Configuration sur interface

Nomenclature

ONE-WAY CHALLENGE TWO-WAY CHALLENGE

Multilink PPP

Point-to-Point

MLP overview:

- MLP combines multiple physical links into a logical bundle called a Multilink PPP bundle.
- The MLP over Serial Interfaces feature provides the following functionalities:
 - Load balancing
 - Increased redundancy
 - Link fragmentation and interleaving (LFI)

Configuration PPP multilink

interface multilink1

ppp multilink ppp multilink group 1 ip address

Interface serial 0/0

encap ppp ppp multilink ppp multilink group 1

Interface serial 0/1

encap ppp ppp multilink ppp multilink group 1

show ppp multilink show interfaces multilink1

PPPoE Client

PPPoE client overview:

- PPPoE is a commonly used application in the deployment of DSL.
- A Cisco router can act as a PPPoE client.
- You can connect multiple PCs on the Ethernet segment that is connected to the Cisco IOS router acting as a PPPoE client.

GRE Tunnel Overview

The following are the main GRE—Generic Routing Encapsulation characteristics:

- GRE is one of many tunneling protocols
- IP protocol 47 defines GRE packets
- Allows routing information to be passed between connected networks
- No encryption

Default GRE Characteristics

- Tunneling of arbitrary OSI Layer 3 payload is the primary goal of GRE
- Stateless (no flow control mechanisms)
- No security (no confidentiality, data authentication, or integrity assurance)
- 24-byte overhead by default (20-byte IP header and 4-byte GRE header)

Configuration d'un GRE

• R1 :

•interface tunnel 10

- tunnel source 1.1.1.1
- tunnel destination 2.2.2.2
- ip address 10.0.0.1 255.255.255.0

• R2 :

•interface tunnel 10

- tunnel source 2.2.2.2
- tunnel destination 1.1.1.1
- ip address 10.0.0.2 255.255.255.0

Configuring GRE Tunnel

To implement a GRE tunnel, perform the following actions: Create a tunnel interface.

Router(config) # interface tunnel tunnel-id

Configure GRE tunnel mode. This is a default tunnel mode so it is not necessary to configure it.

Router(config-if) # tunnel mode gre ip

Configure an IP address for the tunnel interface.

Router(config-if) # ip address ip-address mask

Specify the tunnel source IP address.

Router(config-if) # tunnel source ip-address

Specify the tunnel destination IP address.

Router(config-if) # tunnel destination ip-address

Verifying GRE Tunnel

To verify a GRE tunnel, perform the following actions: Determine whether the tunnel interface is up or down.

Router# show ip interface brief Tunnel tunnel-id

Verify the state of the GRE tunnel.

Router# show interface tunnel tunnel-id

Verify that the tunnel network is seen as directly connected in the routing table.

Router# show ip route

VPN

Connexions entre le siège et les branches

- Connections traditionnelles :
 - Liaison LS, Frame-Relay, ...
 - Désavantages :
 - Cout
 - Bande passante
 - Scalabilité
- Nouveaux modes de connection :
 - VPN MPLS
 - VPN tunnelé (GRE, IPSec, DMVPN)
 - Avantages :
 - Full-mesh
 - Sécurité
 - Scalabilité

Routage via VPN MPLS

- VPN couche 2 :
 - R1 et R2 sont connectés sur le même réseau IP.
 - La relation de voisinage sera établie directement entre R1 et R2
 - Le client souhaite gérer lui-même son infrastructure de routage

- VPN couche 3 :
 - R1 et R2 sont chacun sur un réseau IP différent.
 - Le FAI doit participer au routage entre vos sites.
 - Le client laisse le FAI gérer le routage entre ses sites

Routage via Tunnel GRE

- Le Tunnel GRE :
 - Crée un tunnel virtuel point à point entre 2 routeurs
 - Utilise l'identifiant IP protocol 47
 - Pas de cryptage, pas de mécanisme de contrôle de flux
 - Rajoute l'entête GRE (24 octets)
 - Peut encapsuler une grande variété de protocoles
 - Peut encapsuler le multicast
 - Approprié pour les protocoles de routage

Routage via DMVPN

- Désavantages du tunnel GRE :
 - Le rajout d'un nouveau spoke entraîne une reconfiguration du hub
 - Le trafic entre les spokes doit traverser le hub
- DMVPN :
 - Scalable avec configuration minimale sur hub
 - Utilise mGRE et NHRP.
 - Fonctionne aussi avec des spokes dont l'adresse IP est attribuée dynamiquement (nécessite authentification via PKI)

mGRE

- Plusieurs spokes peuvent se connecter à une seule interface tunnel mGRE
- Autorise le multicast :
 - •Permet la diffusion des annonces de routage

NHRP

- Next Hop Resolution Protocol
 - Permet au hub de découvrir dynamiquement l'adresse IP distante des spokes
 - Permet aux spokes découvrir l'adresse IP des autres spokes

Requête NHRP

• Lorsqu'un spoke souhaite envoyer du trafic à un autre spoke, il interroge la base de 10.1.1.3 is at 209.165.202.149 NHRP Server données du hub, puis

Introduction aux algorithmes

- Clefs symétriques :
 - DES
 - 64 bits
 - 3DES
 - AES
 - 128, 192 ou 256 bits
 - MD5
 - 128 bits
 - SHA1
 - 160 bits
- Clefs asymétriques :
 - RSA
 - 512 bits ... 2048 bits ...
- Diffie-Hellman :
 - group 1 : 768 bits
 - group 2 : 1024 bits
 - group 5 : 1536 bits

FORMATION CCNA 2018

Fonctions d'un VPN

- Confidentialité
 - cryptage DES, 3DES, AES
- Intégrité
 - Hash MD5, SHA1
- Authentification
 - PSK
 - pre shared key
 - RSA signatures
 - certificat
- Avantages d'un VPN sur une solution point à point WAN :
 - Réduction des coûts
 - Sécurité
 - Extensibilité

Authentification & intégrité

FORMATION CCNA 2018

Confidentialité

VPN IPSec

- Couche 3 OSI
- Equipements à chaque extrémité :
 - 2 routeurs
 - 2 pare-feu ASA ('Adaptative Security Appliance')
 - 1 routeur et 1 pare-feu ASA
- Ils sont classifiés de 3 types :
 - Remote access VPN
 - Site to site VPN
 - Host to host VPN

IP Sec Mode Tunnel

- Le paquet original n'est pas modifié.
- Il est encapsulé dans un header IPSec.

IP Sec Mode Transport

 Protège les données du paquet IP (couche 4) mais pas les entêtes IP

Remote access VPN

• Easy VPN nécessite un logiciel client

Usager distant

Site to site VPN

• Extension du LAN sur le WAN

Host to host VPN

• VPN de hôte à hôte

Cloud Computing

Cloud Computing and Its Effect on Enterprise Network

- IT resources and services are abstracted from the underlying infrastructure.
- Computing is delivered as a service rather than a product.
- A cloud can be an off-premise hosted model, either application hosting or storage hosting.

Cloud Computing and Its Effect on Enterprise Network (Cont.)

Advantages to the cloud service builder or provider:

- Cost reduction from standardization and automation
- High utilization through virtualized, shared resources
- Easier administration
- Fail-in-place operations model

Advantages to cloud users:

- On-demand, self-service resource provisioning
- Centralized appearance of resources
- Highly available, horizontally scaled application architectures
- No local backups

Cloud Computing Services

Sofware Defined Network

SDN

Overview of Network Programmability in Enterprise Network

Application Programming Interfaces

Traditional Network Architecture

SDN Architecture

Application Programming Interfaces (Cont.)

- Northbound API:
 - Currently, very little has been done for unification; different applications use different APIs.
- Southbound API:
 - OpenFlow: Configure the flow tables in switches.
 - NETCONF: Configure devices with XML, transactional.
 - OpFlex

Application Policy Infrastructure Controller – Entreprise module

Cisco APIC-EM

APIC-EM is a centralized automation of policy-based application profiles with the following benefits:

- Single point for network automation for consistency
- Automation, which saves time and costs.
- Open and programmable network devices, using APIs
- Support for greenfield and brownfield deployments

Cisco APIC-EM Features

Cisco APIC-EM has these features:

- Optimize and automate Enterprise WAN and access operations:
 - ACL
 - IWAN
 - QoS
 - User policy
 - Zero-touch provisioning of new devices (images and configuration)
- Improve visibility into the network:
 - Discovery
 - Topology

Using APIC-EM for Path Tracing

FORMATION CCNA 2018

Introducing Cisco Intelligent WAN

The following are the four components of IWAN:

- Transport Independent Connectivity
- Intelligent Path Control
- Application Optimization
- Highly Secure Connectivity

FORMATION CCNA 2018

ACL

Access-List

ACL standard

- Filtrer selon l'@ IP source
- Son identifiant global est un numéro
 - entre 1 et 99
- Chaque ligne de l'ACL se voit attribuer automatiquement un numéro de ligne qui incrémente de 10 en 10

Numéros de ligne

- show ip access-list
 - access-list 1
 - **10** permit 10.0.1.0 0.0.0.255
 - 20 deny 10.0.2.0 0.0.0.255
- Chaque ligne sera testée une par une, dans l'ordre.
 - Si l'@ IP source appartient à la population de la ligne, la commande deny/permit est exécutée
 - Sinon, la ligne suivante est testée.

Raccourcis

Pour filtrer selon une seule addresse :

- access-list 1 permit 10.1.1.1 0.0.0.0
- access-list 1 permit host 10.1.1.1

Pour filtrer quelque soit l'addresse :

- Exemple : autoriser toute address
- access-list 1 permit 0.0.0.0 255.255.255.255
- access-list 1 permit any

Dernière ligne implicite

- Pour toute ACL, l'IOS rajoute une dernière ligne avec deny any.
- Cette ligne n'apparait pas dans le show ip access-list

• Comment optimiser notre ACL 1 ? access-list 1 permit 10.0.1.0 0.0.0.255 deny any (implicite, non écrit)

- access-list 1 permit 10.0.1.0 0.0.0.255
- access-list 1 deny 10.0.2.0 0.0.0.255
- access-list 1 permit 10.0.3.0 0.0.0.255
- access-list 1 deny 10.0.4.0 0.0.0.255

Exemple 1 Optimisation

- access-list 1 permit 10.0.1.0 0.0.0.255
- access-list 1 permit 10.0.3.0 0.0.0.255

Exemple 2 - schéma

- Autoriser tous les 10.0.0.0 /8
 - Sauf, les 10.1.0.0/16 qui sont interdits
 - Par contre, les 10.1.2.0/24 sont autorisés
 - Mais les 10.1.2.18 et 10.1.2.33 sont interdits

Exemple 2 - bonne réponse

- Autoriser tous les 10.0.0.0 /8
 - Sauf, les 10.1.0.0/16 qui sont interdits
 - Par contre, les 10.1.2.0/24 sont autorisés
 - Mais les 10.1.2.18 et 10.1.2.33 sont interdits

de PLUS précis au MOINS précis

- access-list 1 deny host 10.1.2.18
- access-list 1 deny host 10.1.2.33
- access-list 1 permit 10.1.2.0 0.0.255
- access-list 1 deny 10.1.0.0 0.0.255.255
- access-list 1 permit 10.0.0.0 0.255.255.255

FORMATION CCNA 2018

Appliquer l'ACL sur une interface

- Deux possibilités :
 - filtrer le traffic entrant
 - filtrer le traffic sortant
- Deux commandes :
 - interface Fa0/0
 - ip access-group 1 in
 - ip access-group 2 out

Mais une seule ACL

par interface et par direction

pour le protocole (IP)

Vérification

• Vérifier les ACL configurées :

•Show access-lists

• Vérifier où sont appliquées les ACL :

•Show ip interface

ACL étendues

- Capable de filtrer selon **5** critères
 - protocole
 - @ IP source
 - port source (optionnel)
 - IP destination
 - port destination (optionnel)
- Son identifiant global est un numéro
 - entre 100 et 199

Standard vs étendue

FORMATION CCNA 2018

Utilité d'une ACL étendue

 Autoriser 10.0.11.0/24 à aller sur 10.0.12.0/24 en telnet, mais pas en http

Solutions

• ip access-group 100 ?

Détail de l'ACL

access- list	lden- tifiant	permit ou deny	Proto cole	@ IP Source	Masque Source	Port Source	@ IP Dest	Masque Dest.	Port Dest.
access-list	100	permit	tcp	10.0.11.0	0.0.0.255		10.0.12.0	0.0.0.255	eq 23
access-list	100	deny	tcp	10.0.11.0	0.0.0.255		10.0.12.0	0.0.0.255	eq 80
			ip						neq
			udp						lt
			ospf						gt
			eigrp						range
			etc						

Opérateurs

• Opérateurs disponibles pour filtrer le port :

- eq equal
- neq not equal
- It less than
- gt greater than
- range
- plage

ACL nommées

- ip access-list standard TOTO
 - permit
 - deny....
- ip access-list extended TATA
 - permit
 - deny....
- idem pour appliquer l'ACL sur une interface
 - int fa0/0
 - ip access-group TOTO in | out

FORMATION CCNA 2018

Avantages des ACL nommées

- possibilité de supprimer une ligne :
 - ip access-list standard TOTO
 - no 20
 - supprime la ligne 20
- possibilité d'insérer une ligne :
 - ip access-list standard TOTO
 - 33 permit
 - entre la ligne 30 et la ligne 40

Traffic filtré

- Les ACL ne filtrent que le traffic qui traverse le routeur.
- Elle ne filtrent pas le traffic généré par le routeur.

- Cette règles s'applique à toutes les ACL
 - nommées ou numérotées
 - standards ou étendues

Exemple

- access-list 100 deny tcp any any eq 23
- access-list 100 permit ip any any
- implicit deny
- int fa0/0
 - ip access-group 100 out
 - Est-ce que R1 peut faire un telnet vers R3?
 - Est-ce que R2 peut faire un telnet vers R3?

ACL

Appliquée sur une ligne VTY

Cas particulier du TELNET

- Au lieu d'appliquer une ACL
 - sur une interface physique,
 - on peut l'appliquer sur les lignes vty.

 Objectif = filtrer les individus qui peuvent accéder au routeur / switch.

Exemple

- access-list 1 permit host 10.0.0.1
- line vty 0 4
 - access-class 1 in
- seul l'individu 10.0.0.1 pourra faire un telnet sur cet équipement
Exercice

- Seuls les administrateurs peuvent accéder aux routeurs en telnet.
- Les administrateurs sont tous sur le réseau 10.1.128.0/17.
- Un administrateur ne doit pas pouvoir accéder aux routeurs.
 Son adresse est 10.1.128.200

Solution

• conf t

• access-list 1 deny host 10.1.128.200

- access-list 1 permit 10.1.128.0 0.0.127.255
- line vty 0 4
 - access-class 1 in

NAT

Network Address Translation

 Le routeur a modifié l'@ IP source du paquet avant de le transmettre.

Quel peut être l'intérêt ?

Quatre possibilités

- NAT Statique
- PAT Statique
- NAT Dynamique
- PAT Dynamique

- Objectif :
 - permettre aux clients d'accéder à mon serveur web
- Problème :
 - 10.0.0.100 est interdit sur internet
- Solution :
 - 1. prétendre que mon serveur web est accessible sur **5.5.5.2**
 - 2. translater 5.5.5.2 en 10.0.0.100

- conf t
- int fa0/0
 - ip nat inside
- int fa0/1
 - ip nat outside
- ip nat inside source static 10.0.0.100 5.5.5.2

- Objectif :
 - permettre aux clients d'accéder à mes 2 serveurs (web, smtp)
- Solution n°1:
 - prétendre que mon serveur web est accessible sur
 5.5.2 + translater 5.5.2 en 10.0.0.100
 - prétendre que mon serveur smtp est accessible sur
 5.5.3 + translater 5.5.3 en 10.0.200

- conf t
- int fa0/0
 - ip nat inside
- int fa0/1
 - ip nat outside
- ip nat inside source static 10.0.0.100 5.5.5.2
- ip nat inside source static 10.0.0.200 5.5.5.3

- Objectif :
 - permettre aux clients d'accéder à mes 2 serveurs web
 - utiliser une seule adresse publique pour accéder aux 2 serveurs
- Solution n°2:
 - prétendre que mon serveur web est accessible sur le port 80 de 5.5.5.2 + translater 5.5.5.2 en 10.0.0.100
 - prétendre que mon serveur smtp est accessible sur le port 8080 de 5.5.5.2 + translater 5.5.2 en 10.0.0.200

- Objectif WEB1 :
 - mon serveur web en 10.0.0.100 répond sur le port 80
 - les clients doivent attaquer mon serveur web en allant sur 5.5.5.2 port 80.
- Objectif WEB2:
 - mon serveur smtp 10.0.0.200 répond sur le port 80
 - les clients doivent attaquer mon serveur smtp en allant sur 5.5.5.2 port 8080.

- int fa0/0
 - ip nat inside
- int fa0/1
 - ip nat outside
- ip nat inside source static tcp 10.0.0.100 80 5.5.5.2 80
- ip nat inside source static tcp 10.0.0.200 80 5.5.5.2 8080

Exercice

- Objectif WEB :
 - mon serveur web en 10.0.0.100 répond sur le port 80
 - les clients doivent attaquer mon serveur web en allant sur 5.5.5.2 port 8080.
- Objectif WEB2:
 - mon serveur telnet 10.0.0.200 répond sur le port 80
 - les clients doivent attaquer mon serveur telnet en allant sur 5.5.5.2 port 8081.

Solution

- conf t
- int fa0/0
 - ip nat inside
- int fa0/1
 - ip nat outside
- ip nat inside source static tcp 10.0.0.100 80 5.5.5.2 8080
- ip nat inside source static tcp 10.0.0.200 80 5.5.5.2 8081

NAT Dynamique

- Objectif :
 - permettre à mon réseau interne d'accéder à internet.
- Problème :
 - toutes mes adresses internes (10.0.0.1, 10.0.0.2 etc..) sont interdites sur internet.
- Solution :
 - 1. prétendre que mon réseau interne est en 5.5.5.X
 - 2. translater 10.0.0.1 en 5.5.5.1
 - 3. translater 10.0.0.2 en 5.5.5.2
 - 4. etc...

NAT Dynamique

- int fa0/0
 - ip nat inside
- int fa0/1
 - ip nat outside
- ip nat pool TOTO 5.5.5.1 5.5.253 netmask 255.255.255.0
 - ce sont les adresses fictives qui seront attribuées aux adresses translatées
- access-list 1 permit 10.0.0.0 0.0.255
 - ce sont les adresses qui seront translatées
- ip nat inside source list 1 pool TOTO
 - pour activer le NAT

FORMATION CCNA 2018

NAT dynamique

• ip nat pool TOTO 5.5.5.1 5.5.253 netmask 255.255.255.0

 ce sont les adresses fictives en interne qui seront attribuées aux adresses translatées

Cette méthode nécessite

d'acquérir plusieurs adresses publiques !

PAT dynamique

- int fa0/0
 - ip nat inside
- int fa0/1
 - ip nat outside
- access-list 1 permit 10.0.0.0 0.0.255
 - ce sont les adresses qui seront translatées
- ip nat inside source list 1 interface fa0/1 overload
 - toutes les adresses nattés se verront attribuées l'adresse IP de l'interface fa0/1 i.e. 5.5.5.254

FORMATION CCNA 2018

Terminologie dans show ip nat translation

- Où est placé l'équipement :
 - Inside = équipement physiquement situé côté inside
 - Outside = équipement physiquement situé côté outside
- De quel point de vue je me place :
 - Local = point de vue d'un équipement situé inside
 - Global = point de vue d'un équipement situé outside
- Définitions :
 - Inside Local = @ IP d'un équipement situé dans inside du point de vue d'un équipement situé dans inside
 - Inside Global = @ IP d'un équipement situé dans inside du point de vue d'un équipement situé dans outside
 - Outside Local = @ IP d'un équipement situé dans outside du point de vue d'un équipement situé dans inside
 - Outside Global = @ IP d'un équipement situé dans outside du point de vue d'un équipement situé dans outside

FORMATION CCNA 2018

Exemple 1 - NAT dynamique

- 10.0.0.1 est translaté en 5.5.5.1
- 10.0.0.2 est translaté en 5.5.5.2

Inside Global	Inside Local	Outside Local	Outside Global
5.5.5.1	10.0.0.1	3.3.3.3	3.3.3.3
5.5.5.2	10.0.0.2	3.3.3.3	3.3.3.3

Administration des réseaux

SNMP : Simple Network Management Protocol

SNMP Overview

- NMS polls the SNMP agent on the network device to obtain statistics.
- Analyzing and representing the results:
 - Graphing
 - Reporting
- Thresholds can be set to trigger a notification process when exceeded.

SNMP

• Deux rôles:

- SNMP managers
- SNMP agents

• Utilise la MIB.

• Opérations disponibles:

- Get + GetNext + GetBulk (si Version 2)
- Set
- Traps
- Informs (= trap + ack) si Version 2

FORMATION CCNA 2018

050

SNMP Versions

SNMP Version	Security	Bulk Retrieval Mechanism
SNMPv1	Plaintext authentication with community strings	No
SNMPv2c	Plaintext authentication with community strings	Yes
SNMPv3	Strong authentication, confidentiality, and integrity	Yes

Versions SNMP

• SNMPv1:

• community

• SNMPv2c:

- GetBulk
- messages d'erreurs plus détaillés

• SNMPv3:

- 3 niveaux de sécurité:
 - noAuthNoPriv
 - » authentification basée sur usernames
 - authNoPriv
 - » authentification basée sur algo MD5 / SHA
 - authPriv
- » + cryptage basé sur algo DES, 3DES /AES

061

Obtaining Data from an SNMP Agent

An SNMP graphing tool periodically polls an SNMP agent (for example, a router) and graphs obtained values:

Obtaining Data from an SNMP Agent (Cont.)

- MIB is a collection of information that is organized hierarchically.
- · OIDs uniquely identify managed objects in an MIB.
 - A 5-minute, exponentially moving average of the CPU busy percentage: 1.3.6.1.4.1.9.2.1.58.0

FORMATION CCNA 2018

Configuration SNMP

- Exemple de configuration :
- snmp-server community string [ro | rw] [acl]
- **snmp-server enable traps** [notification-type]
- **snmp-server host** *host-id* [**traps** | **informs**] *community*

964

Gestion des messages

Syslog

Le Process de Logging

- Le PROCESS de Logging :
 - reçoit les messages de log et les debug
 - distribue ces messages à :
 - console, logging buffer, terminal lines (si 'terminal monitor'
 - serveurs syslog, serveurs SNMP
- Format d'un message de log:
 - seq no:timestamp: %facility-severity-MNEMONIC:description
 - *seq no:* sequence number
 - *timestamp:* horodatage
 - facility: syslog facility
 - *severity:* entre 0 et 7
 - MNEMONIC: identifiant alphanumérique unique
 - *description:* détail textuel
 - Jun 13 10:17:20.352: %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet0/0, changed state to up

066

Niveaux de sévérité

Level	Keyword	Description	Definition
0	emergencies	System is unusable	LOG_EMERG
1	alerts	Immediate action is needed	LOG_ALERT
2	critical	Critical conditions exist	LOG_CRIT
3	errors	Error conditions exist	LOG_ERR
4	warnings	Warning conditions exist	LOG_WARNING
5	notification	Normal but significant condition	LOG_NOTICE
6	informational	Informational messages only	LOG_INFO
7	debugging	Debugging messages	LOG_DEBUG

Configuration du Logging

• Activer:

- logging on
- Envoyer aux destinations internes:
 - **logging buffered** [buffer-size | severity-level]
 - **logging console** [severity-level]
 - terminal monitor
 - logging monitor severity-level

062

Configuration du Logging

- Envoyer à un server syslog :
 - logging host {{ip-address | hostname} | ipv6
 {ipv6-address | hostname}}
 - logging trap severity-level
- Envoyer à un server SNMP :
 - snmp-server enable trap syslog
 - logging history [severity-level]

060

Which logging command can enable administrators to correlate syslog messages with millisecond precision?

- A. no logging console
- B. logging buffered 4
- C. no logging monitor
- D. service timestamps log datetime mscec
- E. logging host 10.2.0.21

• Réponse : D

NetFlow

NetFlow Overview

- NetFlow is an application for collecting IP traffic information.
- Reports from NetFlow are like a phone bill.
- NetFlow enables the following:
 - Measuring who uses network resources
 - Accounting and charging for resource utilization
 - Using the measured information to do effective network planning
 - Using the measured information to customize applications and services
NetFlow Overview (Cont.)

Example of analysis on a NetFlow collector:

Shows the top talkers, top listeners, top protocols, and more.

NetFlow Overview (Cont.)

Cisco defines a flow as a unidirectional sequence of packets with seven common values:

- Source IP address
- Destination IP address
- Source port number
- Destination port number
- Layer 3 protocol type
- ToS
- Input logical interface

NetFlow Configuration

- Configure NetFlow data capture
- Configure NetFlow data export
- Configure NetFlow data export version
- Verify NetFlow, its operation, and statistics

NetFlow Configuration (Cont.)

Configuration of NetFlow on router R1

NetFlow Configuration (Cont.)

```
R1#show ip interface GigabitEthernet0/1
<output omitted>
    Input features: Ingress-NetFlow, MCI Check
    Output features: Access List, Post-Ingress-NetFlow, Egress-NetFlow
```

Displays whether NetFlow is enabled on an interface

```
R1#show ip flow export
Flow export v9 is enabled for main cache
Export source and destination details :
    VRF ID : Default
        Destination(1) 10.1.10.100 (9996)
    Version 9 flow records
    43 flows exported in 15 udp datagrams
```

Displays the status and the statistics for NetFlow data export

NetFlow Configuration (Cont.)

```
Branch#show ip cache flow
<output omitted>
IP Flow Switching Cache, 278544 bytes
 2 active, 4094 inactive, 31 added
 6374 ager polls, 0 flow alloc failures
 Active flows timeout in 30 minutes
 Inactive flows timeout in 15 seconds
IP Sub Flow Cache, 34056 bytes
 2 active, 1022 inactive, 31 added, 31 added to flow
 0 alloc failures, 0 force free
 1 chunk, 0 chunks added
 last clearing of statistics 00:49:48
          Total Flows Packets Bytes Packets Active(Sec) Idle(Sec)
Protocol
        Flows /Sec /Flow /Pkt /Sec /Flow
                                                         /Flow
TCP-Telnet190.019580.16.5TCP-WWW140.082020.00.0
                                                         11.7
                                                          1.5
TCP-other 2 0.0 19 98 0.0 2.2
                                                           8.9
<output omitted>
        SrcIPaddress DstIf DstIPaddress Pr SrcP DstP Pkts
SrcIf
Gi0/1
         172.16.1.100 Gi0/0.10
                                    10.1.10.100
                                                   01 0000 0000
                                                               1341
```

Displays a summary of the NetFlow accounting statistics

QoS

La Qualité de service

Traffic Characteristics

- Latency ≤ 150 ms
- Jitter $\leq 30 \text{ ms}$
- Loss ≤ 1%
- Bandwidth (30–128 Kbps)

- Latency ≤ 150 ms
- Jitter $\leq 30 \text{ ms}$
- Loss ≤ 0.1–1%
- Bandwidth (384 Kbps–20+ Mbps)

Classification et marquage

Marquage en couche 2:802.1p, CoS

- 802.1p est aussi appelé Classe de Service
- Chaque type de trafic se voit assigné d'une valeur CoS.
- Les CoS 6 et 7 sont réservés aux protocles de routage et supervision

Marquage en couche 3 : IP Precedence, DSCP

- IPv4
 - Les 3 premiers bits du champ ToS sont appelés IP précédence.
 - Les autres bits ne sont pas utilisés
- DiffServ
 - Les 6 premiers bits du champ ToS sont appelés DiffServ Code Point (DSCP).
 - DSCP est compatible avec la précédence.
 - Les deux derniers bits sont utilisés pour le contrôle de flux

Frontières de la Classification

- Un équipement de confiance traite correctement les paquets.
- La classification doit être aussi proche de la source que possible
- 1 et 2 sont optimales, 3 est acceptable, si le switch d'accès n'est pas capable de faire de la classification

Configuration d'un switch pour la Voix

•Le traffic est marqué prioritaire sur le VLAN voix

Commandes de base pour un Téléphone

Configuration du "voice VLAN"

• switchport voice vlan 110

Vérification de la configuration

show interfaces fa 0/4 switchport

QoS Mechanisms Overview

QoS Mechanisms—Classification and Marking

Various Layer 2 and Layer 3 fields for marking traffic:

- **CoS** = class of service
 - Layer 2, Ethernet marking
- ToS = type of service
 - Layer 3, IP packet
 - For IPv4, it is called "ToS." For IPv6, it is called "Traffic Class."
- DSCP = differentiated services code point
 - The value that is used to describe the meaning of ToS
- CS = Class Selector
 - Subset of DSCP fields
- TID = traffic identifier
 - What CoS is for wired Ethernet, TID is for wireless Ethernet.

Classification Tools

There are three general ways to classify traffic:

- Markings:
 - Looks at header information.
 - Classification is done based on the existing markings.

Addressing:

- Looks at header information.
- Classification is done based on the source/destination port, interface, Layer 2 address, or Layer 3 address.

Application signatures:

- Looks at the content of the payload.

Classification Tools (Cont.)

Example of advanced classification tool: NBAR

- Layers 4 to 7 deep-inspection classifier.
- While most applications can be identified by inspecting Layers 3 and 4 information, this kind of identification is not always possible.
- NBAR classifies applications by looking into the packet payload and comparing the content against its signature database.

QoS Mechanisms—Policing, Shaping, and Re-Marking

Policers and shapers are both rate-limiters, but they differ in how they treat excess traffic; policers drop it and shapers delay it.

Tools for Managing Congestion

Congestion management includes:

- Queuing (or buffering) is the logic of ordering packets in output buffers. It is only activated when congestion occurs. When queues fill up, packets can be reordered so that the higher-priority packets can be sent out of the exit interface sooner than the lower priority ones.
- Scheduling is a process of deciding which packet should be sent out next. Scheduling occurs regardless of whether there is congestion on the link.

Tools for Managing Congestion (Cont.)

There are many queuing mechanisms. Two modern examples from Cisco are as follows:

- Class-based weighted fair queuing:
 - Traffic classes get fair bandwidth guarantees.
 - No latency guarantees—only suitable for data networks.
- Low-latency queuing:
 - Takes the previous model and adds a queue with strict priority (for real-time traffic).

Tools for Congestion Avoidance

Tail drop:

- When a queue fills up, it drops packets as they arrive.
- It can result in waste of bandwidth if TCP traffic is predominant.

Congestion avoidance:

- It drops random packets before a queue fills up.
- Cisco uses WRED (drops packets randomly, but "randomness" is skewed by traffic weights).

Which feature can you implement to reserve bandwidth

for VoIP calls across the call path?

- A. PQ
- B. CBWFQ
- C. round robin
- D. RSVP

• Réponse : D

IP SLA

Service Level Agreement

Using IP SLA for Troubleshooting

IP SLA can use ICMP Echo Request and Response packets to test availability.

Step 4 Access the console of R1 and configure an IP SLA ICMP Echo test to the SRV1 IP addres (10.10.3.30).

Define the IP SLA with the number 1 and set the frequency to 10 seconds.

```
Rl# conf t
Rl(config)# ip sla 1
Rl(config-ip-sla)# icmp-echo 10.10.3.30
Rl(config-ip-sla-echo)# frequency 10
Rl(config-ip-sla-echo)# exit
```

Step 5 Schedule IP SLA 1 on R1 to perform an ICMP Echo test forever and to start running now.

```
Rl(config)# ip sla schedule 1 life forever start-time now
Rl(config)# exit
```

Félicitations

Vous avez suivi avec succès

cette formation